Subscribe to RSS
DOI: 10.1055/s-0028-1083544
A Very Mild Access to 3,4-Dihydroisoquinolines Using Triphenyl Phosphite-Bromine-Mediated Bischler-Napieralski-Type Cyclization
Publication History
Publication Date:
15 October 2008 (online)
![](https://www.thieme-connect.de/media/synlett/200818/lookinside/thumbnails/10.1055-s-0028-1083544-1.jpg)
Abstract
Substituted β-phenylethylamides undergo smooth intramolecular cyclization to 3,4-dihydroisoquinolines in good to excellent yields when treated with bromotriphenoxyphosphonium bromide at -60 ˚C in dichloromethane in the presence of triethylamine. The reaction proceeds under the mildest conditions ever reported for Bischler-Napieralski-type cyclizations. When chlorotriphenoxyphosphonium choride is used, low yields are obtained instead.
Key words
Bischler-Napieralski cyclization - phosphonium halides - iminoyl halides - isoquinoline alkaloids - necatorone - triphenyl phosphite
-
1a
Aniszewski T. Alkaloids - Secrets of Life Elsevier; Amsterdam: 2007. -
1b
Shulgin AT.Perry WE. The Simple Plant Isoquinolines Transform Press; London: 2003. -
1c
Lundström J. In The Alkaloids Vol. 21:Brossi A. Academic Press; New York: 1983. p.255-327 -
1d
The
Alkaloids
Vol. 7:
Manske RHF. Academic Press; New York: 1960. -
1e
The
Alkaloids
Vol. 4:
Manske RHF.Holmes HL. Academic Press; New York: 1954. - For recent reviews, see:
-
2a
Bentley KW. Nat. Prod. Rep. 2006, 20: 444 -
2b
Bentley KW. Nat. Prod. Rep. 2005, 22: 249 -
2c
Bentley KW. Nat. Prod. Rep. 2004, 21: 395 -
2d
Bentley KW. Nat. Prod. Rep. 2003, 20: 342 - 3
Bischler A.Napieralski B. Ber. Dtsch. Chem. Ges. 1893, 26: 1903 - For reviews, see:
-
4a
Whaley WM.Govindachari TR. Org. React. 1951, 6: 74 -
4b
Kametani T.Fukumoto K. In The Chemistry of Heterocyclic Compounds Part 1, Vol. 38:Grethe G.Weissberger A.Taylor EC. Wiley; New York: 1981. p.139-274 -
4c
Fowler FW. In Comprehensive Heterocyclic Chemistry Vol. 2:Katritzky AR.Rees CW. Pergamon; Oxford: 1984. p.410-416 -
4d
Jones G. In Comprehensive Heterocyclic Chemistry II Vol. 5:Katritzky AR.Rees CW.Scriven DFV. Elsevier; Oxford: 1996. p.179-181 - For reviews, see:
-
5a
Larghi EL.Amongero M.Bracca ABJ.Kaufman TS. Arkivoc 2005, (xii): 98 -
5b
Chrzanowska M.Rozwadowska MD. Chem. Rev. 2004, 104: 3341 -
5c
Cox ED.Cook JM. Chem. Rev. 1995, 95: 1797 -
6a
Nagubandi S.Fodor G. J. Heterocycl. Chem. 1980, 17: 1457 -
6b
Nagubandi S.Fodor G. Tetrahedron 1980, 36: 1279 -
6c
Gal J.Wienkam RJ.Castagnoli N. J. Org. Chem. 1974, 39: 418 -
6d
Fodor G.Gal J.Phillips BA. Angew. Chem., Int. Ed. Engl. 1972, 11: 919 - For selected examples, see:
-
7a
Martin SF.Garrison PJ. J. Org. Chem. 1982, 47: 1513 -
7b
Bosch J.Domingo A.Linares A. J. Org. Chem. 1983, 48: 1075 -
7c
Sotomayor N.Domínguez E.Lete E. J. Org. Chem. 1996, 61: 4062 -
7d
Ishikawa T.Shimooka K.Narioka T.Noguchi S.Saito T.Ishikawa A.Yamazaki E.Harayama T.Seki H.Yamaguchi K. J. Org. Chem. 2000, 65: 9143 -
7e
Capilla AS.Romero M.Pujol MD.Caignard DH.Renard P. Tetrahedron 2001, 57: 8297 -
7f
Batra S.Sabnis YA.Rosenthal PJ.Avery MA. Bioorg. Med. Chem. 2003, 11: 2293 - For selected examples, see:
-
8a
Doi S.Shirai N.Sato Y. J. Chem. Soc., Perkin Trans. 1 1997, 2217 -
8b
Wang X.-J.Tan J.Grozinger K. Tetrahedron Lett. 1998, 39: 6609 -
8c
Sánchez-Sancho F.Mann E.Herradón B. Synlett 2000, 509 -
8d
Nicoletti M.O’Hagan D.Slawin AMZ. J. Chem. Soc., Perkin Trans. 1 2002, 116 -
8e
Chern M.-S.Li W.-R. Tetrahedron Lett. 2004, 45: 8323 - 9
Snyder HR.Werber FX. J. Am. Chem. Soc. 1950, 72: 2962 -
10a
Itoh N.Sugasawa S. Tetrahedron 1957, 1: 45 -
10b
Itoh N.Sugasawa S. Tetrahedron 1959, 6: 16 - 11
Kanaoka Y.Sato E.Yonemitsu O.Ban Y. Tetrahedron Lett. 1964, 5: 2419 - 12
Ramesh D.Srinivasan M. Synth. Commun. 1986, 16: 1523 - 13
Judeh ZMA.Ching CB.Bu J.McCluskey A. Tetrahedron Lett. 2002, 43: 5089 - 14
Hegedüs A.Hell Z.Potor A. Catal. Commun. 2006, 7: 1022 - 15
Saito T.Yoshida M.Ishikawa T. Heterocycles 2001, 54: 437 - 16
Larsen RD.Reamer RA.Corley EG.Davis P.Grabowski EJJ.Reider PJ.Shinkai I. J. Org. Chem. 1991, 56: 6034 - 17
Bhattacharijya A.Chattopadhyay P.Bhaumik M.Pakrashi SC. J. Chem. Res., Synop. 1989, 228 -
18a
Banwell MG.Bissett BD.Busato S.Cowden CJ.Hockless DCR.Holman JW.Read RW.Wu AW. J. Chem. Soc., Chem. Commun. 1995, 2551 -
18b
Wang Y.-C.Georghiou PE. Synthesis 2002, 2187 - 19
Boruah M.Konwar D. J. Org. Chem. 2002, 67: 7138 - 20
Spaggiari A.Blaszczak LC.Prati F. Org. Lett. 2004, 6: 3885 - 21
Spaggiari A.Davoli P.Blaszczak LC.Prati F. Synlett 2005, 661 -
22a
Vaccari D.Davoli P.Bucciarelli M.Spaggiari A.Prati F. Lett. Org. Chem. 2007, 4: 319 -
22b
Vaccari D.Davoli P.Spaggiari A.Prati F. Synlett 2008, 1317 -
23a
Acetamides 1a-e,h were prepared by treatment of the parent β-phenylethylamine with Ac2O, whereas for amides 1f,g the appropriate acyl chloride was employed instead. Except for 1a and 1b, which were obtained from commercially available β-phenyl- and 4-methoxy-β-phenylethylamine, respectively, in all other cases the starting β-phenylethylamine was synthesized by condensation of the corresponding aromatic aldehyde with nitromethane in the presence of AcOH and NH4OAc, and subsequent reduction of the resulting nitrostyrene with LAH in THF.7f,²³b In particular, 3-methoxybenzaldehyde, piperonal, veratryl aldehyde, and 3,4,5-trimethoxybenz-aldehyde were used for 1c,d,e-g,h, respectively. In the latter case, the original procedure for the synthesis of mescaline was used.²³c All synthesized β-phenylethylamines were used without any further purification.
-
23b
Sawant D.Kumar R.Maulik PR.Kundu B. Org. Lett. 2006, 8: 1525 -
23c
Späth E. Monatsh. Chem. 1919, 40: 129 -
25a
Fugmann B.Steffan B.Steglich W. Tetrahedron Lett. 1984, 25: 3575 -
25b
Hilger CS.Fugmann B.Steglich W. Tetrahedron Lett. 1985, 26: 5975 - 26
Antkowiak R.Antkowiak WZ. In The Alkaloids Vol. 40:Brossi A. Academic Press; San Diego: 1991. p.190-340 - 27
Spaggiari A.Vaccari D.Davoli P.Torre G.Prati F.
J. Org. Chem. 2007, 72: 2216 - 28
Okuda K.Kotake Y.Ohta S. Bioorg. Med. Chem. Lett. 2003, 13: 2853 - 29
Liu D.Venhuis BJ.Wikström HV.Dijkstra D. Tetrahedron 2007, 63: 7264 - 30
Moore MB.Wright HB.Vernsten M.Freifelder M.Richards RK. J. Am. Chem. Soc. 1954, 76: 3656 -
31a
Bills JL.Noller CR. J. Am. Chem. Soc. 1948, 70: 957 -
31b
Späth E.Polgar N. Monatsh. Chem. 1929, 51: 190 -
32a
Brossi A.Dolan LA.Teitel S. Org. Synth. 1977, 56: 3 -
32b
Venkov AP.Ivanov II. Tetrahedron 1996, 52: 12299 -
33a
Cortés EC.Romero EC.Ramírez FG. J. Heterocycl. Chem. 1994, 31: 1425 -
33b
Minor DL.Wyrick SD.Charifson PS.Watts VJ.Nichols DE.Mailman RB. J. Med. Chem. 1994, 37: 4317 -
34a
Kuo C.-Y.Wu M.-J. J. Chin. Chem. Soc. (Taipei) 2005, 52: 965 -
34b
von Nussbaum F.Miller B.Wild S.Hilger CS.Schumann S.Zorbas H.Beck W.Steglich W. J. Med. Chem. 1999, 42: 3478 -
35a
Späth E. Monatsh. Chem. 1921, 42: 97 -
35b
Leete E.
J. Am. Chem. Soc. 1966, 88: 4219
References and Notes
Synthesis of 6,7-Dimethoxy-1-phenyl-3,4-dihydro-isoquinoline
(2f)
Triphenyl phosphite (0.89 mL, 3.41 mmol) was
dissolved in anhyd CH2Cl2 (20 mL) and cooled
to -60 ˚C. Bromine (0.18 mL, 3.41 mmol)
and anhyd Et3N (0.51 mL, 3.69 mmol) were introduced sequentially
under argon flow. N-[2-(3,4-dimeth-oxyphenyl)ethyl]benzamide
(1f, 819 mg, 2.84 mmol) was then added
in one portion to the bright yellow solution maintained at the same
temperature under vigorous stirring. The resulting mixture was gradually
warmed to r.t. over a
2 h period, and left to stir overnight.
Subsequently, the dark reaction mixture was extracted with 3 M HCl
(3 × 15 mL), the combined aqueous layers
were basified with 10% aq NaOH until pH = 11
and extracted with CH2Cl2 (3 × 15
mL). The pooled organic phases were dried over MgSO4,
filtered, and evaporated under reduced pressure to afford the desired 3,4-dihydroisoquinoline 2f as a brownish liquid (692 mg, 92% yield). ¹H
NMR (200 MHz, CDCl3): δ = 2.68
(2 H, t,
J = 7.4 Hz,
CH
2CH2N), 3.67
(3 H, s, OMe), 3.77 (2 H, q, J = 7.4
Hz, CH2CH
2N), 3.86
(3 H, m, OMe), 6.75 (2 H, s, arom.), 7.36-7.59 (5 H, m,
Ph). ¹³C NMR (50 MHz, CDCl3): δ = 26.0,
47.6, 56.0, 56.1, 110.4, 111.7, 120.0, 121.5, 128.1, 128.7, 129.2,
129.8, 132.5, 139.1, 147.5. MS: m/z = 235 [M+],
220, 204, 190, 177, 162,159, 146, 133, 110, 103, 91, 77, 65. Anal.
Calcd for C12H13ClN2: C, 76.38;
H, 6.41; N, 5.24. Found: C, 76.59; H, 6.65; N, 5.08.