RSS-Feed abonnieren
DOI: 10.1055/s-0028-1083571
Phenyltrimethylammonium Tribromide: A Versatile Reagent in Organic Synthesis
Publikationsverlauf
Publikationsdatum:
15. Januar 2009 (online)
Biographical Sketches

Introduction
Phenyltrimethylammonium tribromide (PTAB) is known to be a convenient oxidizing and brominating agent. It is an orange crystal and easy to handle, with a melting point at 113-115 ˚C. [¹] It has been used for the oxidative transformation of trans-stilbene oxide to 2-phenyl-1,3-dioxane in the presence of various of 1,3-diols and a catalytic amount of SbBr3, [²] for brominating the α-position of carbonyl compounds, [³-8] α′-bromination of α,β-unsaturated ketones, [9] and for the addition of bromine to alkenes. [¹0] It was also found to be useful for the chemoselective conversion of 3-alkoxyfurans to 2-alkoxy-3(2H)-furanones, oxidative ring-opening of 3-alkoxy-2,5-diphenylfurans to cis-2-alkoxy-2-butene-1,4-diones, [¹¹] and synthesis of imidazolines, [¹²] 3-bromo-2-styrylchromones, [¹³] nitro dibromo-phenols, [¹4] pyridazines, [¹5] phytoalexin cyclobrassinin, [¹6] p-bromodienone calixarene derivatives, [¹7] and 2-arylthiazino[5,6-b]indoles. [¹8]
Phenyltrimethylammonium tribromide is commercially available now. It can be readily prepared from N,N-dimethylaniline and dimethyl sulfate, followed by treatment with 48% hydrobromic acid and bromine. [¹]

Scheme 1
Abstracts
(A) Oxidation of Secondary Alcohols to the Corresponding Carbonyl Compounds: Sayama et al. showed that PTAB is an available and chemoselective reagent for the oxidation of secondary alcohols and substituted 1,2-diols to the corresponding ketones, 1,2-diketones and α-ketols in the presence of catalytic amounts of SbBr3 or CuBr2 at room temperature. [¹9] The oxidative cleavage of the glycol C-C bond for 1,2-diols was not found. Furthermore, aliphatic primary alcohols were not affected under the same oxidative conditions. |
![]() |
(B) Selective Oxidation of Sulfides to Sulfoxides: An efficient procedure for the selective oxidation of various sulfides to the corresponding sulfoxides in aqueous pyridine solution was achieved using PTAB as oxidant. [²0] This method allowed ¹8O-labelled sulfoxides to be prepared without loss of isotope enrichment of the used ¹8O-water. |
![]() |
(C) Oxidative Conversion of 3-Alkoxyfurans to 2-Hydroxy-3(2H)- furanones and 2-Hydroxy-2-butene-1,4-diones: PATB can be applied for the oxidative ring opening of 3-alkyoxy-2,5-diphenylfurans to 2-hydroxy-2-butene-1,4-dions in t-BuOH at room temperature. The transformation of 3-alkyoxy-2,4,5-triphenylfurans to 2-hydroxy-2,4,5-triphenyl-3-(2H)-furanone was also accomplished with PTAB in t-BuOH under the same reaction conditions. [²¹] |
![]() |
(D) One-Pot α-Bromoacetalization of Carbonyl Compounds: A convenient and practical method for the one-pot α-bromoacetalization of carbonyl compound has been developed. [²²] The reaction was performed in tetrahydrofuran-ethylene glycol (1:1) with 1-2 equivalents of PTAB at room temperature to afford the corresponding α-bromoacetals in good to excellent yields. |
![]() |
(E) Aziridination of Alkenes: Dauban and co-workers showed that PATB can catalyze the intramolecular aziridination of N-chlor-amine salts of ω-unsaturated sulfonamides. [²³] The aziridination of the alkene can also be carried out employing an understoichiometric amount of chloramines-T trihydrate in the presence of 5 mol% PTAB. [²4] |
![]() |
(F) Coupling Reaction of Carbon Dioxide and Epoxides: A combination of SalenRu(PPh3)2 [²5] or metal porphyrin [²6] with PTAB has been used as novel and high efficient catalysts for the coupling reaction of carbon dioxide and epoxides to yield the corresponding cyclic carbonates. |
![]() |
- 1
Jacques J.Marquet A. Org. Synth. 1988, Coll. 6: 175 - 2
Sayama S. Tetrahedron Lett. 2006, 47: 4001 - 3
Sawa M.Mizuno K.Harada H.Tateishi H.Arai Y.Suzuki S.Oue M.Tsujiuchi H.Furutani Y.Kato S. Bioorg. Med. Chem. Lett. 2005, 15: 1061 - 4
Javed T.Kahlon SS. J. Heterocyclic Chem. 2002, 39: 627 - 5
Sukdolak S.Solujić S.Manojlović N.Vuković N.Krstić L. J. Heterocyclic Chem. 2004, 41: 593 - 6
Baldwin JE.Fryer AM.Pritchard GJ. J. Org. Chem. 2001, 66: 2588 - 7
Juo W.-J.Lee T.-H.Liu W.-C.Ko S.Chittimalla SK.Rao CP.Liao C.-C. J. Org. Chem. 2007, 72: 7992 - 8
Vasquez-Martinez Y.Ohri RV.Kenyon V.Holman TR.Sepúlveda-Boza S. Bioorg. Med. Chem. 2007, 15: 7408 - 9
Miranda Moreno MJS.Sá e Melo ML.Campos Neves AS. Synlett 1994, 651 - 10
Spadoni G.Bedini A.Guidi T.Tarzia G.Lucini V.Pannacci M.Fraschini F. ChemMedChem 2006, 1: 1099 - 11
Sayama S. Heterocycles 2005, 65: 1347 - 12
Sayama S. Synlett 2006, 1479 - 13
Santos CMM.Silva AMS.Cavaleir JAS. Synlett 2007, 3113 - 14
Ballini R.Barboni L.Giarlo G.Palmieri A. Synlett 2006, 1956 - 15
Attanasi OA.Filipone P.Fiorucei C.Mantellini F. Synlett 1997, 1361 - 16
Csomós P.Fodor L.Sohár P.Bernáth G. Tetrahedron 2005, 61: 9257 - 17
Gaeta C.Martino M.Neri P. Tetrahedron Lett. 2003, 44: 9155 - 18
Csomós P.Fodor L.Mándity I.Bernáth G. Tetrahedron 2007, 63: 4983 - 19
Sayama S.Onami T. Synlett 2004, 2369 - 20
Rábai J.Kapovits I.Tanács B.Tamás J. Synthesis 1990, 847 - 21
Sayama S. Synth. Commun. 2007, 37: 3067 - 22
Visweswariah S.Orakash G.Bhushan V.Chandrasekaran S. Synthesis 1982, 309 - 23
Dauban P.Dodd RH. Tetrahedron Lett. 2001, 42: 1037 - 24
Kaiser HM.Lo WF.Riahi AM.Spannenberg A.Beller M.Tse MK. Org. Lett. 2006, 8: 5761 - 25
Jing H.Chang T.Jin L.Wu M.Qiu W. Catal. Commun. 2007, 8: 1630 - 26
Jin L.Jing H.Chang T.Bu X.Wang L.Liu Z. J. Mol. Catal. A: Chem. 2007, 261: 262
References
- 1
Jacques J.Marquet A. Org. Synth. 1988, Coll. 6: 175 - 2
Sayama S. Tetrahedron Lett. 2006, 47: 4001 - 3
Sawa M.Mizuno K.Harada H.Tateishi H.Arai Y.Suzuki S.Oue M.Tsujiuchi H.Furutani Y.Kato S. Bioorg. Med. Chem. Lett. 2005, 15: 1061 - 4
Javed T.Kahlon SS. J. Heterocyclic Chem. 2002, 39: 627 - 5
Sukdolak S.Solujić S.Manojlović N.Vuković N.Krstić L. J. Heterocyclic Chem. 2004, 41: 593 - 6
Baldwin JE.Fryer AM.Pritchard GJ. J. Org. Chem. 2001, 66: 2588 - 7
Juo W.-J.Lee T.-H.Liu W.-C.Ko S.Chittimalla SK.Rao CP.Liao C.-C. J. Org. Chem. 2007, 72: 7992 - 8
Vasquez-Martinez Y.Ohri RV.Kenyon V.Holman TR.Sepúlveda-Boza S. Bioorg. Med. Chem. 2007, 15: 7408 - 9
Miranda Moreno MJS.Sá e Melo ML.Campos Neves AS. Synlett 1994, 651 - 10
Spadoni G.Bedini A.Guidi T.Tarzia G.Lucini V.Pannacci M.Fraschini F. ChemMedChem 2006, 1: 1099 - 11
Sayama S. Heterocycles 2005, 65: 1347 - 12
Sayama S. Synlett 2006, 1479 - 13
Santos CMM.Silva AMS.Cavaleir JAS. Synlett 2007, 3113 - 14
Ballini R.Barboni L.Giarlo G.Palmieri A. Synlett 2006, 1956 - 15
Attanasi OA.Filipone P.Fiorucei C.Mantellini F. Synlett 1997, 1361 - 16
Csomós P.Fodor L.Sohár P.Bernáth G. Tetrahedron 2005, 61: 9257 - 17
Gaeta C.Martino M.Neri P. Tetrahedron Lett. 2003, 44: 9155 - 18
Csomós P.Fodor L.Mándity I.Bernáth G. Tetrahedron 2007, 63: 4983 - 19
Sayama S.Onami T. Synlett 2004, 2369 - 20
Rábai J.Kapovits I.Tanács B.Tamás J. Synthesis 1990, 847 - 21
Sayama S. Synth. Commun. 2007, 37: 3067 - 22
Visweswariah S.Orakash G.Bhushan V.Chandrasekaran S. Synthesis 1982, 309 - 23
Dauban P.Dodd RH. Tetrahedron Lett. 2001, 42: 1037 - 24
Kaiser HM.Lo WF.Riahi AM.Spannenberg A.Beller M.Tse MK. Org. Lett. 2006, 8: 5761 - 25
Jing H.Chang T.Jin L.Wu M.Qiu W. Catal. Commun. 2007, 8: 1630 - 26
Jin L.Jing H.Chang T.Bu X.Wang L.Liu Z. J. Mol. Catal. A: Chem. 2007, 261: 262
References

Scheme 1





