Synlett 2008(19): 2981-2984  
DOI: 10.1055/s-0028-1083632
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Preparation of Optically Active 1-O-Alkyl-3-O-arylsulfonyl-sn-glycerol Derivatives: Substrate Engineering in Enzyme-Mediated Enantioselective Hydrolysis

Yasutaka Shimada, Hiroshi Sato, Sachiyo Mochizuki, Kazutsugu Matsumoto*
Department of Chemistry, Meisei University, Hodokubo 2-1-1, Hino, Tokyo 191-8506, Japan
Fax: +81(42)5917360; e-Mail: mkazu@chem.meisei-u.ac.jp;
Further Information

Publication History

Received 5 August 2008
Publication Date:
12 November 2008 (online)

Abstract

Lipase PS catalyzes the enantioselective hydrolysis of various 2-acetyl compounds of the 1-O-alkyl-3-O-arylsulfonyl-sn-glycerol derivatives to afford the corresponding optically active compounds. Changing the structure of the 1-O-alkyl and 3-O-arylsulfonyl groups affects both the reactivity and enantioselectivity. Finally, the E value of the reaction for 2-acetyl-3-O-3,5-dimethylbenzenesulfonyl-1-O-4-methoxybenzyl-sn-glycerol is greater than 200.

    References and Notes

  • For recent reviews, see:
  • 1a Bornscheuer UT. Kazlauskas RJ. Hydrolases in Organic Synthesis   Wiley-VCH; Weinheim: 1999. 
  • 1b Bommarius AS. Riebel BR. Biocatalysis   Wiley-VCH; Weinheim: 2004. 
  • 1c Faber K. Biotransformations in Organic Chemistry: A Textbook   5th ed.:  Springer; Berlin: 2004. 
  • 1d Ghanem A. Aboul-Enein HY. Chirality  2004,  17:  1 
  • 1e Garcia-Uradiales E. Alfonso I. Gotor V. Chem. Rev.  2005,  105:  313 
  • 1f Bornscheuer UT. Trends and Challenges in Enzyme Technology   Springer; Berlin: 2005. 
  • 1g Fogassy E. Nógrádi M. Kozma D. Egri G. Pálovics E. Kiss V. Org. Biomol. Chem.  2006,  4:  3011 
  • 1h Gadler P. Faber K. Trends Biotechnol.  2007,  25:  83 
  • 1i Ghanem A. Tetrahedron  2007,  63:  1721 
  • 1j Gotor V. Alfonso I. Garcia-Urdiales E. Asymmetric Organic Synthesis with Enzymes   Wiley-VCH; Weinheim: 2008. 
  • For enzymatic hydrolysis of acyl derivatives of 1,2-diol monotosylates in an aqueous media, see:
  • 2a Hamaguchi S. Ohashi T. Watanabe K. Agric. Biol. Chem.  1986,  50:  375 
  • 2b Hamaguchi S. Ohashi T. Watanabe K. Agric. Biol. Chem.  1986,  50:  1629 
  • 2c Hamaguchi S, Katayama K, Ohashi T, and Watanabe K. inventors; JP  62158250. 
  • 2d Hamaguchi S, Kobayashi M, Katayama K, Ohashi T, and Watanabe K. inventors; JP  62209049. 
  • 2e Kobayashi M, Hamaguchi S, Katayama K, Ohashi T, and Watanabe K. inventors; JP  62212382. 
  • 2f Pederson RL. Liu KK.-C. Rutan JF. Chen L. Wong C.-H. J. Org. Chem.  1990,  55:  4897 
  • 2g Chen C.-S. Liu Y.-C. Marsella M. J. Chem. Soc., Perkin Trans. 1  1990,  2559 
  • For enzymatic esterification of 1,2-diol monotosylates in organic solvent, see:
  • 3a Chen C.-S. Liu Y.-C. Tetrahedron Lett.  1989,  30:  7165 
  • 3b Chênevert R. Gagnon R. J. Org. Chem.  1993,  58:  1054 
  • 3c Neagu C. Hase T. Tetrahedron Lett.  1993,  34:  1629 
  • 3d Boaz NW. Zimmerman RL. Tetrahedron: Asymmetry  1994,  5:  153 
  • 3e Boaz NW. Falling SN. Moore MK. Synlett  2005,  1615 
  • 3f

    For enzymatic hydrolysis in organic solvent, see ref. 3c. For enzymatic alcoholysis in organic solvent, see refs. 3a and 2g.

  • 4 Saito Y, and Nakamura T. inventors; JP  10057096. For enantioselective decomposition of 1,2-diol monotosylate by microorganisms, see:
  • 5 Shimada Y. Sato H. Minowa S. Matsumoto K. Synlett  2008,  367 
  • 8 Chen C.-S. Fujimoto Y. Girdaukas G. Sih CJ. J. Am. Chem. Soc.  1982,  104:  7294 
  • 12 Martinelli MJ. Vaidyanathan R. Pawlak JM. Nayyar NK. Dhokte UP. Doecke CW. Zollars LMH. Moher ED. Khau VV. Kosmrlj B. J. Am. Chem. Soc.  2002,  124:  3578 
  • 13 Byun H.-S. Bittman R. Tetrahedron Lett.  1989,  30:  2751 
  • 14 Takano S. Goto E. Hirama M. Ogasawara K. Heterocycles  1981,  16:  381 
6

The racemic alcohols (±)-2, except for 2d, as the precursor of the substrates were prepared in three steps: 1) protection of the hydroxyl group of 2,2-dimethyl-4-hydroxymethyl-1,3-dioxolane, 2) 2 M aq HCl-THF, 3) TsCl, Bu2SnO, Et3N-CH2Cl2.¹² In all cases, the resulting (±)-2 contained the regioisomers, 3-acetyl-2-O-tosyl-sn-glycerol (±)-7, as the minor product. After the enzymatic acylation of the mixture using porcine pancreas lipase (PPL, Sigma), the pure (±)-2 was obtained. The details will be reported separately. On the other hand, (±)-2d was prepared from the coupling of (±)-glycidol with TsOH, followed by selective protection of the primary hydroxyl group with TBS.

7

The absolute configuration of 2a {[α]D ²5 -4.19 (c 2.49, C6H6) (59% ee)} was confirmed by comparing the obtained optical rotation value with the reported value: lit.¹³ [α]D ²5
-6.70 (c 10, C6H6; R form).

9

The substrate with a mesyl group was quite unstable and decomposed under the enzymatic reaction conditions.

10

Compound (R)-5: [α]D ³0 +1.89 (c 0.90, CHCl3; 93% ee).
Compound (S)-5: [α]D ²¹ -1.81 (c 0.83, CHCl3; 95% ee); lit.¹4 [α]D ²¹ +1.79 (c 5.02, CHCl3; R form).

11

To a 200 mL Erlenmeyer flask containing (±)-6 (72.3 mg, 0.17 mmol; sub. concd, ca. 4 mM) were added of i-Pr2O (4 mL), 0.1 M phosphate buffer (40 mL, pH 6.5), and lipase PS (30 mg). After the mixture was incubated for 24 h at 30 ˚C, the products were extracted with EtOAc and purified by flash column chromatography on SiO2 (eluent: hexane-EtOAc, 4:1) to afford (S)-6 (26.4 mg, 37%, 99% ee) and (R)-7 (31.5 mg, 48%, 96% ee).