Subscribe to RSS
DOI: 10.1055/s-0028-1087339
Stereoselective Synthesis of Saturated Heterocycles via Palladium-Catalyzed Alkene Carboetherification and Carboamination Reactions
Publication History
Publication Date:
12 November 2008 (online)
Abstract
The development of palladium-catalyzed carboetherification and carboamination reactions between aryl or alkenyl halides and alkenes bearing pendant heteroatoms is described. These transformations effect the stereoselective construction of useful heterocycles, such as tetrahydrofurans, pyrrolidines, imidazolidin-2-ones, isoxazolidines, and piperazines. The scope, limitations, and applications of these reactions are presented, and current stereochemical models are described. The mechanism of the product formation, which involves an unusual intramolecular syn-insertion of an alkene into a palladium-heteroatom bond, is also discussed in detail.
1 Introduction
2 Palladium-Catalyzed Synthesis of Tetrahydrofurans from γ-Hydroxyalkenes and Aryl or Alkenyl Halides
2.1 Mechanism of the Tetrahydrofuran Formation
3 Palladium-Catalyzed Synthesis of Pyrrolidines from γ-Aminoalkenes and Aryl or Alkenyl Halides
3.1 Tandem Palladium-Catalyzed N-Arylation-Carboamination Reactions of Primary Amines
3.2 Palladium-Catalyzed Carboamination Reactions of N-Protected γ-Aminoalkenes
3.3 Mechanism of the Palladium-Catalyzed Carboamination Reactions: Surprises and Utility
3.4 Application of the Palladium-Catalyzed Carboamination of N-Protected γ-Aminoalkenes to the Stereoselective Synthesis of (+)-Preussin and Its Analogues
4 Synthesis of Imidazolidin-2-ones via Palladium-Catalyzed Carboamination Reactions
5 Synthesis of Isoxazolidines via Palladium-Catalyzed Carboetherification Reactions
6 Synthesis of Piperazines via Palladium-Catalyzed Carboamination Reactions
7 Summary and Future Outlook
Key words
alkenes - catalysis - heterocycles - palladium - stereoselective synthesis
- For reviews on biologically active tetrahydrofurans and pyrrolidines, see:
-
1a
Kang EJ.Lee E. Chem. Rev. 2005, 105: 4348 -
1b
Saleem M.Kim HJ.Ali MS.Lee YS. Nat. Prod. Rep. 2005, 22: 696 -
1c
Bermejo A.Figadere B.Zafra-Polo M.-C.Barrachina I.Estornell E.Cortes D. Nat. Prod. Rep. 2005, 22: 269 -
1d
Daly JW.Spande TF.Garraffo HM. J. Nat. Prod. 2005, 68: 1556 -
1e
Hackling AE.Stark H. ChemBioChem 2002, 3: 946 -
1f
Lewis JR. Nat. Prod. Rep. 2001, 18: 95 - For recent select reviews on metal-catalyzed or -mediated reactions for the synthesis of heterocycles, see:
-
2a
D’Souza DM.Mueller TJJ. Chem. Soc. Rev. 2007, 36: 1095 -
2b
Chemler SR.Fuller PH. Chem. Soc. Rev. 2007, 36: 1153 -
2c
Minatti A.Muniz K. Chem. Soc. Rev. 2007, 36: 1142 -
2d
Zeni G.Larock RC. Chem. Rev. 2006, 106: 4644 -
2e
Conreaux D.Bouyssi D.Monteiro N.Balme G. Curr. Org. Chem. 2006, 10: 1325 -
2f
Muzart J. Tetrahedron 2005, 61: 5955 -
2g
Wolfe JP.Thomas JS. Curr. Org. Chem. 2005, 9: 625 -
2h
Nakamura I.Yamamoto Y. Chem. Rev. 2004, 104: 2127 -
2i
Zeni G.Larock RC. Chem. Rev. 2004, 104: 2285 -
2j
Deiters A.Martin SF. Chem. Rev. 2004, 104: 2199 -
2k
Barluenga J.Santamaria J.Tomas M. Chem. Rev. 2004, 104: 2259 -
2l
McReynolds MD.Dougherty JM.Hanson PR. Chem. Rev. 2004, 104: 2239 - For reviews on the synthesis of tetrahydrofurans, see:
-
3a
Wolfe JP.Hay MB. Tetrahedron 2007, 63: 261 -
3b
Miura K.Hosomi A. Synlett 2003, 143 -
3c
Koert U. Synthesis 1995, 115 -
3d
Harmange J.-C.Figadere B. Tetrahedron: Asymmetry 1993, 4: 1711 -
3e
Cardillo G.Orena M. Tetrahedron 1990, 46: 3321 -
3f
Boivin TLB. Tetrahedron 1987, 43: 3309 - For reviews on the synthesis of pyrrolidines, see:
-
4a
Bellina F.Rossi R. Tetrahedron 2006, 62: 7213 -
4b
Coldham I.Hufton R. Chem. Rev. 2005, 105: 2765 -
4c
Pyne SG.Davis AS.Gates NJ.Hartley JP.Lindsay KB.Machan T.Tang M. Synlett 2004, 2670 -
4d
Felpin F.-X.Lebreton J. Eur. J. Org. Chem. 2003, 3693 - For related transformations of γ-hydroxy- or γ-amino-substituted allenes or alkynes, see:
-
5a
Balme G.Bouyssi D.Lomberget T.Monteiro N. Synthesis 2003, 2115 -
5b
Kang S.-K.Baik T.-G.Kulak AN. Synlett 1999, 324 -
5c
Jacobi PA.Liu H. Org. Lett. 1999, 1: 341 -
5d
Walkup RD.Guan L.Mosher MD.Kim SW.Kim YS. Synlett 1993, 88 -
5e
Luo FT.Schreuder I.Wang RT. J. Org. Chem. 1992, 57: 2213 -
5f
Luo FT.Wang RT. Tetrahedron Lett. 1992, 33: 6835 -
5g
Arcadi A.Cacchi S.Marinelli F. Tetrahedron Lett. 1992, 33: 3915 -
5h
Davies IW.Scopes DIC.Gallagher T. Synlett 1993, 85 -
5i
Wolf LB.Tjen KCMF.Rutjes FPJT.Hiemstra H.Schoemaker HE. Tetrahedron Lett. 1998, 39: 5081 - Other metal-catalyzed or -mediated reactions of γ-hydroxy- or γ-aminoalkenes that generate heterocycles with the formation of both a carbon-heteroatom and a carbon-carbon bond have also been reported. For examples of copper-catalyzed intramolecular carboamination reactions of 2-allyl-N-(arylsulfonyl)anilines and related derivatives, see:
-
6a
Sherman ES.Fuller PH.Kasi D.Chemler SR.
J. Org. Chem. 2007, 72: 3896 -
6b
Sherman ES.Chemler SR.Tan TB.Gerlits O. Org. Lett. 2004, 6: 1573 - For Pd(II)-catalyzed aminocarbonylation reactions of alkenes bearing tethered nitrogen nucleophiles, see:
-
6c
Harayama H.Abe A.Sakado T.Kimura M.Fugami K.Tanaka S.Tamaru Y. J. Org. Chem. 1997, 62: 2113 - For carboamination reactions between alkenes and N-allylsulfonamides, see:
-
6d
Scarborough CC.Stahl SS. Org. Lett. 2006, 8: 3251 - For carboamination reactions of vinylcyclopropanes, see:
-
6e
Larock RC.Yum EK. Synlett 1990, 529 - For Pd(II)-catalyzed alkoxycarbonylation reactions of alkenes bearing tethered oxygen nucleophiles, see:
-
6f
Semmelhack MF.Bodurow C. J. Am. Chem. Soc. 1984, 106: 1496 -
6g
Semmelhack MF.Zhang N. J. Org. Chem. 1989, 54: 4483 -
6h
McCormick M.Monahan R.Soria J.Goldsmith D.Liotta D. J. Org. Chem. 1989, 54: 4485 -
6i
Semmelhack MF.Kim C.Zhang N.Bodurow C.Sanner M.Dobler W.Meier M. Pure Appl. Chem. 1990, 62: 2035 ; and references cited therein - For Pd-catalyzed reactions of β-aminoalkenes with alkenyl halides which afford pyrrolidine products via formal 1,1-addition to the alkene, see:
-
7a
Harris GD.Herr RJ.Weinreb SM. J. Org. Chem. 1992, 57: 2528 -
7b
Harris GD.Herr RJ.Weinreb SM. J. Org. Chem. 1993, 58: 5452 -
7c
Larock RC.Yang H.Weinreb SM.Herr RJ. J. Org. Chem. 1994, 59: 4172 - 8 For a review on Pd(0)- and Pd(II)-catalyzed carboetherification
and carboamination reactions, see:
Wolfe JP. Eur. J. Org. Chem. 2007, 571 - 9
Crabtree RH. The Organometallic Chemistry of the Transition Metals 4th ed.: John Wiley and Sons; Hoboken NJ: 2005. -
10a
Yamamoto A. J. Chem. Soc., Dalton Trans. 1999, 1027 -
10b
Beletskaya IP.Cheprakov AV. Chem. Rev. 2000, 100: 3009 -
11a
Lin BL.Clough CR.Hillhouse GL. J. Am. Chem. Soc. 2002, 124: 2890 -
11b
Koo K.Hillhouse GL. Organometallics 1995, 14: 4421 -
11c
Matsunaga PT.Hillhouse GL.Rheingold AL. J. Am. Chem. Soc. 1993, 115: 2075 -
11d
Koo K.Hillhouse GL. Organometallics 1998, 17: 2924 -
11e
Williams BS.Goldberg KI. J. Am. Chem. Soc. 2001, 123: 2576 -
11f
Brice JL.Harang JE.Timokhin VI.Anastasi NR.Stahl SS. J. Am. Chem. Soc. 2005, 127: 2868 -
11g
Dick AR.Kampf JW.Sanford MS. J. Am. Chem. Soc. 2005, 127: 12790 -
12a
Hosokawa T.Murahashi S.-I. Acc. Chem. Res. 1990, 23: 49 -
12b
Hegedus LS. Angew. Chem., Int. Ed. Engl. 1988, 27: 1113 -
13a
Muci AR.Buchwald SL. Top. Curr. Chem. 2002, 219: 131 -
13b
Hartwig JF. Pure Appl. Chem. 1999, 71: 1417 -
14a
Villanueva LA.Abboud KA.Boncella JM. Organometallics 1992, 11: 2963 -
14b
VanderLende DD.Abboud KA.Boncella JM. Inorg. Chem. 1995, 34: 5319 -
14c
Cowan RL.Trogler WC. J. Am. Chem. Soc. 1989, 111: 4750 -
14d
Bryndza HE. Organometallics 1985, 4: 406 ; and references cited therein -
14e
Bennett MA.Jin H.Li S.Rendina LM.Willis AC. J. Am. Chem. Soc. 1995, 117: 8335 -
14f
Ritter JCM.Bergman RG. J. Am. Chem. Soc. 1997, 119: 2580 -
14g
Casalnuovo AL.Calabrese JC.Milstein D. J. Am. Chem. Soc. 1988, 110: 6738 -
14h
Hamed O.Thompson C.Henry PM. J. Org. Chem. 1997, 62: 7082 -
14i
Nelson DJ.Li R.Brammer C. J. Am. Chem. Soc. 2001, 123: 1564 - For recent studies on alkene insertion into late transition metal-oxygen or -nitrogen bonds, see:
-
15a
See also ref. 11f
-
15b
Hayashi T.Yamasaki K.Mimura M.Uozumi Y.
J. Am. Chem. Soc. 2004, 126: 3036 -
15c
Zhao P.Krug C.Hartwig JF. J. Am. Chem. Soc. 2005, 127: 12066 -
15d
Trend RM.Ramtohul YK.Stoltz BM. J. Am. Chem. Soc. 2005, 127: 17778 -
15e
Zhao P.Incarvito CD.Hartwig JF. J. Am. Chem. Soc. 2006, 128: 9642 - 16
Milstein D.Stille JK. J. Am. Chem. Soc. 1979, 101: 4981 - 17
Larock RC.Leung W.-Y.Stoltz-Dunn S. Tetrahedron Lett. 1989, 30: 6629 - 18
Fournet G.Balme G.Gore J. Tetrahedron 1990, 46: 7763 - 19
Trost BM.Pfrengle W.Urabe H.Dumas J. J. Am. Chem. Soc. 1992, 114: 1923 -
20a
Wolfe JP.Rossi MA. J. Am. Chem. Soc. 2004, 126: 1620 -
20b
Hay MB.Hardin AR.Wolfe JP. J. Org. Chem. 2005, 70: 3099 -
22a
Widenhoefer RA.Zhong HA.Buchwald SL. J. Am. Chem. Soc. 1997, 119: 6787 -
22b
Widenhoefer RA.Buchwald SL. J. Am. Chem. Soc. 1998, 120: 6504 -
22c
Mann G.Hartwig JF. J. Am. Chem. Soc. 1996, 118: 13109 -
24a
Hay MB.Wolfe JP. J. Am. Chem. Soc. 2005, 127: 16468 -
24b
Hay MB.Wolfe JP. Tetrahedron Lett. 2006, 47: 2793 - 25 Yeh has recently described related
carboetherification reactions of dienes, see:
Yeh M.-CP.Tsao W.-C.Tu L.-H. Organometallics 2005, 24: 5909 - The insertion of alkenes into palladium-carbon bonds is not reversible in systems where the alkylpalladium intermediate generated by carbopalladation contains syn-β-hydrogen atoms, as β-hydride elimination is generally faster than β-aryl or β-alkyl elimination. For rare examples of β-aryl and β-alkyl elimination from Pd(II) complexes that lack β-hydrogen atoms, see:
-
26a
Campora J.Gutierrez-Puebla E.Lopez JA.Monge A.Palma P.del Rio D.Carmona E. Angew. Chem. Int. Ed. 2001, 40: 3641 -
26b
Catellani M.Frignani F.Rangoni A. Angew. Chem., Int. Ed. Engl. 1997, 36: 119 -
26c
Catellani M.Fagnola MC. Angew. Chem., Int. Ed. Engl. 1994, 33: 2421 -
26d
Matsumura S.Maeda Y.Nishimura T.Uemura S. J. Am. Chem. Soc. 2003, 125: 8862 -
26e
Wang X.Stankovich SZ.Widenhoefer RA. Organometallics 2002, 21: 901 ; and references cited therein - 27 For an example of stereochemical
inversion in an isolated palladium complex that proceeds through
a similar mechanism, see:
Burke BJ.Overman LE. J. Am. Chem. Soc. 2004, 126: 16820 - For related examples of stereospecific deuterium migration via reversible β-hydride/deuteride elimination processes, see:
-
29a
Qian H.Widenhoefer RA. J. Am. Chem. Soc. 2003, 125: 2056 -
29b
See also ref. 15b
-
29c
See also ref. 15d
-
30a
Ney JE.Wolfe JP. Angew. Chem. Int. Ed. 2004, 43: 3605 -
30b
Ney JE.Hay MB.Yang Q.Wolfe JP. Adv. Synth. Catal. 2005, 347: 1614 -
32a
Lira R.Wolfe JP. J. Am. Chem. Soc. 2004, 126: 13906 -
32b
Yang Q.Ney JE.Wolfe JP. Org. Lett. 2005, 7: 2575 -
33a
Saito S.Hatanaka K.Yamamoto H. Org. Lett. 2000, 2: 1891 -
33b
Overman LE.Owen CE.Pavan MM.Richards CJ. Org. Lett. 2003, 5: 1809 -
33c
Taniyama D.Hasegawa M.Tomioka K. Tetrahedron: Asymmetry 1999, 10: 221 -
34a
Bordwell FG.Algrim DJ. J. Am. Chem. Soc. 1988, 110: 2964 -
34b
Bordwell FG.Ji G.-Z. J. Am. Chem. Soc. 1991, 113: 8398 -
34c
Zhang X.-M.Bordwell FG. J. Org. Chem. 1994, 59: 6456 -
35a
Bertrand MB.Wolfe JP. Tetrahedron 2005, 61: 6447 -
35b
Bertrand MB.Leathen ML.Wolfe JP. Org. Lett. 2007, 9: 457 - 36
Tom NJ.Simon WM.Frost HN.Ewing M. Tetrahedron Lett. 2004, 45: 905 - 38
Bertrand MB.Wolfe JP. Org. Lett. 2007, 9: 3073 - For Pd-catalyzed reactions of aryl bromides with norbornene and related bicyclo[2.2.n]alkenes which afford benzocyclobutene products, see:
-
39a
Catellani M.Chiusoli GP.Ricotti S. J. Organomet. Chem. 1985, 296: C11 -
39b
Catellani M.Chiusoli GP.Ricotti S.Sabini F. Gazz. Chim. Ital. 1985, 115: 685 -
39c
Catellani M.Ferioli L. Synthesis 1996, 769 - 40
Ney JE.Wolfe JP. J. Am. Chem. Soc. 2005, 127: 8644 - For a discussion of the kinetic and thermodynamic effects in palladium amido complex formation, see:
-
41a
Meyers C.Maes BUW.Loones KTJ.Bal G.Lemiere GLF.Dommisse RA. J. Org. Chem. 2004, 69: 6010 -
41b
Driver MS.Hartwig JF. Organometallics 1997, 16: 5706 - 42 When NaOt-Bu
was employed as the base with N-Boc-
or
N-acyl-protected substrates,
the amido complex could also be generated via the reaction of 58 with the deprotonated carbamate or amide.
In addition, the amido complex could also be generated through the
reaction of the amine, carbamate, or amide with an LnPd(Ar)(Ot-Bu) complex, see:
Shekhar S.Hartwig JF. Organometallics 2007, 26: 340 - β-Heteroatom elimination from Pd complexes has been previously observed. Thus, it is likely that the syn-oxypalladation and syn-aminopalladation reactions described in this article are reversible, see:
-
43a
Hacksell U.Daves GD. Organometallics 1983, 2: 772 -
43b
Zhu G.Lu X. Organometallics 1995, 14: 4899 -
43c
Zhao H.Ariafard A.Lin Z. Organometallics 2006, 25: 812 ; and references cited therein - For early examples, see:
-
44a
Kasahara A.Izumi T.Takeda T.Imamura H. Bull. Chem. Soc. Jpn. 1974, 47: 183 -
44b
Andersson C.-M.Larsson J.Hallberg A. J. Org. Chem. 1990, 55: 5757 - For a recent review, see:
-
44c
Oestreich M. Eur. J. Org. Chem. 2005, 783 - For recent reviews, see:
-
45a
Campeau L.-C.Fagnou K. Chem. Commun. 2006, 1253 -
45b
Catellani M. Synlett 2003, 298 -
46a
Zhang L.Zetterberg K. Organometallics 1991, 10: 3806 -
46b
Oestreich M.Dennison PR.Kodanko JJ.Overman LE. Angew. Chem. Int. Ed. 2001, 40: 1439 -
46c
Clique B.Fabritius C.-H.Couturier C.Monteiro N.Balme G. Chem. Commun. 2003, 272 - 47
Lee C.-W.Oh KS.Kim KS.Ahn KH. Org. Lett. 2000, 2: 1213 -
48a
Gillie A.Stille JK. J. Am. Chem. Soc. 1980, 102: 4933 -
48b
Driver MS.Hartwig JF. J. Am. Chem. Soc. 1997, 119: 8232 -
48c
Driver MS.Hartwig JF. J. Am. Chem. Soc. 1996, 118: 7217 -
48d
Culkin DA.Hartwig JF. Organometallics 2004, 23: 3398 ; and references cited therein -
48e
van Leeuwen PWNM.Kamer PCJ.Reek JNH.Dierkes P. Chem. Rev. 2000, 100: 2741 -
48f
Christmann U.Vilar R. Angew. Chem. Int. Ed. 2005, 44: 366 -
48g
Brown JM.Cooley NA. Chem. Rev. 1988, 88: 1031 -
49a
Jensen DR.Schultz MJ.Mueller JA.Sigman MS. Angew. Chem. Int. Ed. 2003, 42: 3810 -
49b
Steinhoff BA.Stahl SS. Org. Lett. 2002, 4: 4179 ; and references cited therein - Ligand substitution reactions of d8-Pd(II) complexes generally occur via an associative mechanism, see:
-
50a
See also ref. 29a
-
50b
Shultz LH.Tempel DJ.Brookhart M. J. Am. Chem. Soc. 2001, 123: 11539 ; and references cited therein. For rare exceptions, see: -
50c
Bartolome C.Espinet P.Martin-Alvarez JM.Villafane F. Eur. J. Inorg. Chem. 2004, 2326 -
50d
Louie J.Hartwig JF. J. Am. Chem. Soc. 1995, 117: 11598 - 51 For the isolation of this compound,
see:
Schwartz RE.Liesch J.Hensens O.Zitano L.Honeycutt S.Garrity G.Fromtling RA.Onishi J.Monaghan R. J. Antibiot. 1988, 41: 1774 -
52a
Johnson JH.Phillipson DW.Kahle AD.
J. Antibiot. 1989, 42: 1184 -
52b
Kasahara K.Yoshida M.Eishima J.Takesako K.Beppu T.Horinouchi S. J. Antibiot. 1997, 50: 267 -
52c
Achenbach TV.Slater PE.Brummerhop H.Bach T.Müller R. Antimicrob. Agents Chemother. 2000, 44: 2794 -
52d
Kinzy TG.Harger JW.Carr-Schmid A.Kwon J.Shastry M.Justice M.Dinman JD. Virology 2002, 300: 60 - 53 For a recent review, see:
Basler B.Brandes S.Spiegel A.Bach T. Top. Curr. Chem. 2005, 243: 1 - Three strategies allow the installation of the aryl moiety within 1-3 steps of the final target. Davis generated the C-2 benzyl group in the final step by the reaction of lithium diphenylcuprate with a pyrrolidinylmethyl iodide (40% yield, single diastereomer; 10 steps total, 9% overall yield), see:
-
54a
Davis FA.Deng J. Tetrahedron 2004, 60: 5111 - Davis has also installed the benzyl moiety through the Horner-Wadsworth-Emmons reaction of a 3-oxopyrrolidin-2-ylphosphonate followed by a two-step reduction sequence (43% yield over 3 steps; 10 steps total, 25% overall yield), see:
-
54b
Davis FA.Zhang J.Qiu H.Wu Y. Org. Lett. 2008, 10: 1433 - Bach employed the Paternò-Büchi reaction of benzaldehyde with a dihydropyrrole (4:1 dr, 53% yield after separation of the diastereomers) followed by a two-step deprotection sequence to generate the benzyl substituent (39% yield over 3 steps; 9 steps total, 11% overall yield), see:
-
54c
Bach T.Brummerhop H. Angew. Chem. Int. Ed. 1998, 37: 3400 - This model is also consistent with the stereochemical outcome of reactions involving analogous γ-(arylamino)-alkenes. For further discussion of A(¹,³)-strain in transformations involving N-substituted amines, see:
-
55a
Hoffmann RW. Chem. Rev. 1989, 89: 1841 -
55b
Hart DJ. J. Am. Chem. Soc. 1980, 102: 397 -
55c
Williams RM.Sinclair PJ.Zhai D.Chen D. J. Am. Chem. Soc. 1988, 110: 1547 -
55d
Kano S.Yokomatsu T.Iwasawa H.Shibuya S. Heterocycles 1987, 26: 2805 - 56
Bertrand MB.Wolfe JP. Org. Lett. 2006, 8: 2353 -
57a
Fritz JA.Nakhla JS.Wolfe JP. Org. Lett. 2006, 8: 2531 -
57b
Fritz JA.Wolfe JP. Tetrahedron 2008, 64: 6838 - 58
Kazmierski WM.Furfine E.Gray-Nunez Y.Spaltenstein A.Wright L. Bioorg. Med. Chem. Lett. 2004, 14: 5685 - 59
Heidempergher F.Pillan A.Pinciroli V.Vaghi F.Arrigoni C.Bolis G.Caccia C.Dho L.McArthur R.Varasi M. J. Med. Chem. 1997, 40: 3369 - 60
Shue H.-J.Chen X.Schwerdt JH.Paliwal S.Blythin DJ.Lin L.Gu D.Wang C.Reichard GA.Wang H.Piwinski JJ.Duffy RA.Lachowicz JE.Coffin VL.Nomeir AA.Morgan CA.Varty GB.Shih N.-Y. Bioorg. Med. Chem. Lett. 2006, 16: 1065 -
61a
Davies SG.Evans GB.Mortlock AA. Tetrahedron: Asymmetry 1994, 5: 585 -
61b
Kubota H.Kubo A.Takahashi M.Shimizu R.Da-te T.Okamura K.Nunami K.-i. J. Org. Chem. 1995, 60: 6776 -
61c
Parisi M.Solo A.Wulff WD.Guzei IA.Rheingold AL. Organometallics 1998, 17: 3696 -
61d
Kise N.Ueda T.Kumada K.Terao Y.Ueda N. J. Org. Chem. 2000, 65: 464 -
62a
Guillena G.Nájera C. J. Org. Chem. 2000, 65: 7310 -
62b
Cardillo G.Orena M.Penna M.Sandri S.Tomasini C. Tetrahedron 1991, 47: 2263 -
62c
Trost BM.Fandrick DR. J. Am. Chem. Soc. 2003, 125: 11836 - For a review, see:
-
63a
Sartori G.Maggi R. In Science of Synthesis Vol. 18:Ley SV.Knight JG. Thieme; Stuttgart: 2005. p.665 - For other recent approaches to the synthesis of cyclic ureas, see:
-
63b
Kim M.Mulcahy JV.Espino CG.DuBois J. Org. Lett. 2006, 8: 1073 -
63c
Streuff J.H övelmann CH.Nieger M.Muñiz K. J. Am. Chem. Soc. 2005, 127: 14586 -
63d
Zabawa TP.Kasi D.Chemler SR. J. Am. Chem. Soc. 2005, 127: 11250 -
63e
Kim MS.Kim Y.-W.Hahm HS.Jang JW.Lee WK.Ha H.-J. Chem. Commun. 2005, 3062 ; and references cited therein -
63f
Bar GLJ.Lloyd-Jones GC.Booker-Milburn KI. J. Am. Chem. Soc. 2005, 127: 7308 - For syntheses of cyclic ureas from acyclic N-allylureas that form both a carbon-carbon and a carbon-nitrogen bond, see:
-
64a
See also Ref. 6c.
-
64b
Tamaru Y.Hojo M.Higashimura H.Yoshida Z.-i. J. Am. Chem. Soc. 1988, 110: 3994 -
64c
Danishefsky S.Taniyama E.Webb RR. Tetrahedron Lett. 1983, 24: 11 -
65a
Ishiyama H.Tsuda M.Endo T.Kobayashi J. Molecules 2005, 10: 312 -
65b
Minter AR.Brennan BB.Mapp AK. J. Am. Chem. Soc. 2004, 126: 10504 -
65c
Palmer GC.Ordy MJ.Simmons RD.Strand JC.Radov LA.Mullen GB.Kinsolving CR.St. Georgiev V.Mitchell JT.Allen SD. Antimicrob. Agents Chemother. 1989, 33: 895 - 66 For a review on the use of isoxazolidines
as intermediates in complex molecule syntheses, see:
Frederickson M. Tetrahedron 1997, 53: 403 -
67a
Lait SM.Rankic DA.Keay BA. Chem. Rev. 2007, 107: 767 -
67b
Revuelta J.Cicchi S.Brandi A. Tetrahedron Lett. 2004, 45: 8375 -
67c
LeBel NA.Balasubramanian N. J. Am. Chem. Soc. 1989, 111: 3363 -
67d
Iida H.Kasahara K.Kibayashi C. J. Am. Chem. Soc. 1986, 108: 4647 - For reviews on 1,3-dipolar cycloaddition reactions of nitrones, see:
-
68a
Confalone PN.Huie EM. Org. React. 1988, 36: 1 -
68b
Gothelf KV.Jorgensen KA. Chem. Commun. 2000, 1449 -
68c
Kanemasa S. Synlett 2002, 1371 - 69
Murahashi S.-I.Mitsui H.Shiota T.Tsuda T.Watanabe S. J. Org. Chem. 1990, 55: 1736 - 70
Biloski AJ.Ganem B. Synthesis 1983, 537 - 71
Hay MB.Wolfe JP. Angew. Chem. Int. Ed. 2007, 46: 6492 - 72 For related studies, see:
Jiang D.Peng J.Chen Y. Tetrahedron 2008, 64: 1641 - For Pd-catalyzed carboamination reactions of O-butenyl-hydroxylamine derivatives with aryl bromides that afford isoxazolidine products, see:
-
73a
Peng J.Jiang D.Lin W.Chen Y. Org. Biomol. Chem. 2007, 5: 1391 -
73b
Peng J.Lin W.Yuan S.Chen Y. J. Org. Chem. 2007, 72: 3145 -
73c
Dongol KG.Tay BY. Tetrahedron Lett. 2006, 47: 927 - 74 For Pd-catalyzed carboetherification
reactions of β,γ-unsaturated oximes with aryl
bromides which afford isoxazoline products, see:
Jiang D.Peng J.Chen Y. Org. Lett. 2008, 10: 1695 - 75
Iida H.Watanabe Y.Kibayashi C. J. Chem. Soc., Perkin Trans. 1 1985, 261 - 76
Nilsson JW.Thorstensson F.Kvarnström I.Oprea T.Samuelsson B.Nilsson I. J. Comb. Chem. 2001, 3: 546 -
77a
Chu-Moyer MY.Ballinger WE.Beebe DA.Berger R.Coutcher JB.Day WW.Li J.Mylari BL.Oates PJ.Weekly RM. J. Med. Chem. 2002, 45: 511 -
77b
Zheng G.Dwoskin LP.Deaciuc AG.Zhu J.Jones MD.Crooks PA. Bioorg. Med. Chem. 2005, 13: 3899 -
78a
Schanen V.Cherrier M.-P.de Melo SJ.Quirion J.-C.Husson H.-P. Synthesis 1996, 833 -
78b
Mickelson JW.Belonga KL.Jacobsen EJ. J. Org. Chem. 1995, 60: 4177 -
78c
Mickelson JW.Jacobsen EJ. Tetrahedron: Asymmetry 1995, 6: 19 -
78d
Cochran BM.Michael FE. Org. Lett. 2008, 10: 329 - 79
Jung ME.Piizzi G. Chem. Rev. 2005, 105: 1735 - 80
Ma D.Zhang Y.Yao J.Wu S.Tao F. J. Am. Chem. Soc. 1998, 120: 12459 - 81 DEPBT = 3-(diethoxyphosphoryloxy)-1,2,3-benzotriazin-4(3H)-one. The use of other reagents (e.g.,
DCC/HOBt or CDI) resulted in partial epimerization to afford
products with ca. 85-90% ee, see:
Li H.Jiang X.Ye Y.-h.Fan C.Romoff T.Goodman M. Org. Lett. 1999, 1: 91 - 83
Nakhla JS.Wolfe JP. Org. Lett. 2007, 9: 3279
References
Rossi, M. A.; Wolfe, J. P. unpublished results.
23Definitions of ligands (see also Figure
[³]
):
Dpe-phos = bis[2-(diphenylphosphino)phenyl] ether; Xantphos = 9,9-dimethyl-4,5-bis(diphenylphosphino)-xanthene;
NiXantphos = 4,6-bis(diphenylphosphino)-phenoxazine; dppe = 1,2-bis(diphenylphosphino)ethane;
dppp = 1,3-bis(diphenylphosphino)propane;
dppb = 1,4-bis-(diphenylphosphino)butane.
A small amount of a regioisomer analogous to 18 was also formed in this reaction.
31Lira, R.; Wolfe, J. P. unpublished results.
37We have recently developed conditions to effect the Pd-catalyzed carboamination of N-Boc- and N-acyl-protected substrates bearing 1,1- and 1,2-disubstituted alkenes: Bertrand, M. B.; Neukom, J. D.; Wolfe, J. P. J. Org. Chem. 2008, in press; DOI: 10.1021/jo801631v.
82Surprisingly, the stereochemical outcome of the piperazine-forming reactions is opposite to that predicted by the allylic strain model, similar to that shown in Scheme [¹¹] . Our current working hypothesis suggests that the piperazine-forming reactions proceed through a transition state in which the N-aryl group is rotated to minimize allylic strain interactions, and the structure around the cyclizing nitrogen atom is pyramidal. Investigations into this hypothesis are currently underway.