Abstract
The development of palladium-catalyzed carboetherification and
carboamination reactions between aryl or alkenyl halides and alkenes
bearing pendant heteroatoms is described. These transformations
effect the stereoselective construction of useful heterocycles,
such as tetrahydrofurans, pyrrolidines, imidazolidin-2-ones, isoxazolidines,
and piperazines. The scope, limitations, and applications of these
reactions are presented, and current stereochemical models are described.
The mechanism of the product formation, which involves an unusual
intramolecular syn -insertion of an alkene into
a palladium-heteroatom bond, is also discussed in detail.
1 Introduction
2 Palladium-Catalyzed Synthesis of Tetrahydrofurans from γ-Hydroxyalkenes
and Aryl or Alkenyl Halides
2.1 Mechanism of the Tetrahydrofuran Formation
3 Palladium-Catalyzed Synthesis of Pyrrolidines from γ-Aminoalkenes
and Aryl or Alkenyl Halides
3.1 Tandem Palladium-Catalyzed N-Arylation-Carboamination
Reactions of Primary Amines
3.2 Palladium-Catalyzed Carboamination Reactions of N-Protected γ-Aminoalkenes
3.3 Mechanism of the Palladium-Catalyzed Carboamination Reactions:
Surprises and Utility
3.4 Application of the Palladium-Catalyzed Carboamination of N-Protected γ-Aminoalkenes
to the Stereoselective Synthesis of (+)-Preussin and Its
Analogues
4 Synthesis of Imidazolidin-2-ones via Palladium-Catalyzed Carboamination
Reactions
5 Synthesis of Isoxazolidines via Palladium-Catalyzed Carboetherification
Reactions
6 Synthesis of Piperazines via Palladium-Catalyzed Carboamination
Reactions
7 Summary and Future Outlook
Key words
alkenes - catalysis - heterocycles - palladium - stereoselective synthesis
References
For reviews on biologically active
tetrahydrofurans and pyrrolidines, see:
1a
Kang EJ.
Lee E.
Chem. Rev.
2005,
105:
4348
1b
Saleem M.
Kim HJ.
Ali MS.
Lee YS.
Nat. Prod. Rep.
2005,
22:
696
1c
Bermejo A.
Figadere B.
Zafra-Polo M.-C.
Barrachina I.
Estornell E.
Cortes D.
Nat. Prod. Rep.
2005,
22:
269
1d
Daly JW.
Spande TF.
Garraffo HM.
J. Nat. Prod.
2005,
68:
1556
1e
Hackling AE.
Stark H.
ChemBioChem
2002,
3:
946
1f
Lewis JR.
Nat. Prod. Rep.
2001,
18:
95
For recent select reviews on metal-catalyzed
or -mediated reactions for the synthesis of heterocycles, see:
2a
D’Souza DM.
Mueller TJJ.
Chem.
Soc. Rev.
2007,
36:
1095
2b
Chemler SR.
Fuller PH.
Chem.
Soc. Rev.
2007,
36:
1153
2c
Minatti A.
Muniz K.
Chem. Soc. Rev.
2007,
36:
1142
2d
Zeni G.
Larock RC.
Chem. Rev.
2006,
106:
4644
2e
Conreaux D.
Bouyssi D.
Monteiro N.
Balme G.
Curr. Org. Chem.
2006,
10:
1325
2f
Muzart J.
Tetrahedron
2005,
61:
5955
2g
Wolfe JP.
Thomas JS.
Curr.
Org. Chem.
2005,
9:
625
2h
Nakamura I.
Yamamoto Y.
Chem. Rev.
2004,
104:
2127
2i
Zeni G.
Larock RC.
Chem. Rev.
2004,
104:
2285
2j
Deiters A.
Martin SF.
Chem. Rev.
2004,
104:
2199
2k
Barluenga J.
Santamaria J.
Tomas M.
Chem. Rev.
2004,
104:
2259
2l
McReynolds MD.
Dougherty
JM.
Hanson PR.
Chem. Rev.
2004,
104:
2239
For reviews on the synthesis of
tetrahydrofurans, see:
3a
Wolfe JP.
Hay MB.
Tetrahedron
2007,
63:
261
3b
Miura K.
Hosomi A.
Synlett
2003,
143
3c
Koert U.
Synthesis
1995,
115
3d
Harmange J.-C.
Figadere B.
Tetrahedron: Asymmetry
1993,
4:
1711
3e
Cardillo G.
Orena M.
Tetrahedron
1990,
46:
3321
3f
Boivin TLB.
Tetrahedron
1987,
43:
3309
For reviews on the synthesis of
pyrrolidines, see:
4a
Bellina F.
Rossi R.
Tetrahedron
2006,
62:
7213
4b
Coldham I.
Hufton R.
Chem. Rev.
2005,
105:
2765
4c
Pyne SG.
Davis AS.
Gates NJ.
Hartley JP.
Lindsay KB.
Machan T.
Tang M.
Synlett
2004,
2670
4d
Felpin F.-X.
Lebreton J.
Eur. J. Org. Chem.
2003,
3693
For related transformations of γ-hydroxy-
or γ-amino-substituted allenes or alkynes, see:
5a
Balme G.
Bouyssi D.
Lomberget T.
Monteiro N.
Synthesis
2003,
2115
5b
Kang S.-K.
Baik T.-G.
Kulak AN.
Synlett
1999,
324
5c
Jacobi PA.
Liu H.
Org. Lett.
1999,
1:
341
5d
Walkup RD.
Guan L.
Mosher MD.
Kim SW.
Kim YS.
Synlett
1993,
88
5e
Luo FT.
Schreuder I.
Wang RT.
J.
Org. Chem.
1992,
57:
2213
5f
Luo FT.
Wang RT.
Tetrahedron Lett.
1992,
33:
6835
5g
Arcadi A.
Cacchi S.
Marinelli F.
Tetrahedron
Lett.
1992,
33:
3915
5h
Davies IW.
Scopes DIC.
Gallagher T.
Synlett
1993,
85
5i
Wolf LB.
Tjen KCMF.
Rutjes FPJT.
Hiemstra H.
Schoemaker HE.
Tetrahedron Lett.
1998,
39:
5081
Other metal-catalyzed or -mediated
reactions of γ-hydroxy- or γ-aminoalkenes that
generate heterocycles with the formation of both a carbon-heteroatom
and a carbon-carbon bond have also been reported. For examples
of copper-catalyzed intramolecular carboamination reactions of 2-allyl-N -(arylsulfonyl)anilines and related
derivatives, see:
6a
Sherman ES.
Fuller PH.
Kasi D.
Chemler SR.
J.
Org. Chem.
2007,
72:
3896
6b
Sherman ES.
Chemler SR.
Tan TB.
Gerlits O.
Org.
Lett.
2004,
6:
1573
For Pd(II)-catalyzed aminocarbonylation reactions of alkenes bearing
tethered nitrogen nucleophiles, see:
6c
Harayama H.
Abe A.
Sakado T.
Kimura M.
Fugami K.
Tanaka S.
Tamaru Y.
J. Org. Chem.
1997,
62:
2113
For carboamination reactions between alkenes and N -allylsulfonamides, see:
6d
Scarborough CC.
Stahl SS.
Org.
Lett.
2006,
8:
3251
For carboamination reactions of vinylcyclopropanes, see:
6e
Larock RC.
Yum EK.
Synlett
1990,
529
For Pd(II)-catalyzed alkoxycarbonylation reactions of alkenes
bearing tethered oxygen nucleophiles, see:
6f
Semmelhack MF.
Bodurow C.
J. Am. Chem.
Soc.
1984,
106:
1496
6g
Semmelhack MF.
Zhang N.
J. Org. Chem.
1989,
54:
4483
6h
McCormick M.
Monahan
R.
Soria J.
Goldsmith D.
Liotta D.
J. Org. Chem.
1989,
54:
4485
6i
Semmelhack MF.
Kim C.
Zhang N.
Bodurow C.
Sanner M.
Dobler W.
Meier M.
Pure
Appl. Chem.
1990,
62:
2035 ;
and references cited therein
For Pd-catalyzed reactions of β-aminoalkenes
with alkenyl halides which afford pyrrolidine products via formal
1,1-addition to the alkene, see:
7a
Harris GD.
Herr RJ.
Weinreb SM.
J. Org. Chem.
1992,
57:
2528
7b
Harris GD.
Herr RJ.
Weinreb SM.
J. Org. Chem.
1993,
58:
5452
7c
Larock RC.
Yang H.
Weinreb SM.
Herr
RJ.
J.
Org. Chem.
1994,
59:
4172
8 For a review on Pd(0)- and Pd(II)-catalyzed carboetherification
and carboamination reactions, see: Wolfe JP.
Eur.
J. Org. Chem.
2007,
571
9
Crabtree RH.
The Organometallic Chemistry of the Transition
Metals
4th ed.:
John Wiley and Sons;
Hoboken NJ:
2005.
10a
Yamamoto A.
J. Chem. Soc., Dalton Trans.
1999,
1027
10b
Beletskaya IP.
Cheprakov AV.
Chem.
Rev.
2000,
100:
3009
11a
Lin BL.
Clough CR.
Hillhouse GL.
J. Am. Chem. Soc.
2002,
124:
2890
11b
Koo K.
Hillhouse GL.
Organometallics
1995,
14:
4421
11c
Matsunaga PT.
Hillhouse GL.
Rheingold AL.
J. Am. Chem. Soc.
1993,
115:
2075
11d
Koo K.
Hillhouse GL.
Organometallics
1998,
17:
2924
11e
Williams BS.
Goldberg KI.
J.
Am. Chem. Soc.
2001,
123:
2576
11f
Brice JL.
Harang JE.
Timokhin VI.
Anastasi NR.
Stahl SS.
J. Am. Chem. Soc.
2005,
127:
2868
11g
Dick AR.
Kampf JW.
Sanford MS.
J. Am. Chem. Soc.
2005,
127:
12790
12a
Hosokawa T.
Murahashi S.-I.
Acc.
Chem. Res.
1990,
23:
49
12b
Hegedus LS.
Angew. Chem., Int. Ed. Engl.
1988,
27:
1113
13a
Muci AR.
Buchwald SL.
Top. Curr. Chem.
2002,
219:
131
13b
Hartwig JF.
Pure Appl. Chem.
1999,
71:
1417
14a
Villanueva LA.
Abboud KA.
Boncella JM.
Organometallics
1992,
11:
2963
14b
VanderLende DD.
Abboud KA.
Boncella JM.
Inorg. Chem.
1995,
34:
5319
14c
Cowan RL.
Trogler WC.
J.
Am. Chem. Soc.
1989,
111:
4750
14d
Bryndza HE.
Organometallics
1985,
4:
406 ; and references cited therein
14e
Bennett MA.
Jin H.
Li S.
Rendina LM.
Willis AC.
J. Am. Chem. Soc.
1995,
117:
8335
14f
Ritter JCM.
Bergman RG.
J.
Am. Chem. Soc.
1997,
119:
2580
14g
Casalnuovo AL.
Calabrese JC.
Milstein D.
J. Am. Chem. Soc.
1988,
110:
6738
14h
Hamed O.
Thompson C.
Henry PM.
J.
Org. Chem.
1997,
62:
7082
14i
Nelson DJ.
Li R.
Brammer C.
J.
Am. Chem. Soc.
2001,
123:
1564
For recent studies on alkene insertion
into late transition metal-oxygen or -nitrogen
bonds, see:
15a See also ref. 11f
15b
Hayashi T.
Yamasaki K.
Mimura M.
Uozumi Y.
J. Am. Chem. Soc.
2004,
126:
3036
15c
Zhao P.
Krug C.
Hartwig JF.
J.
Am. Chem. Soc.
2005,
127:
12066
15d
Trend RM.
Ramtohul YK.
Stoltz BM.
J. Am. Chem. Soc.
2005,
127:
17778
15e
Zhao P.
Incarvito CD.
Hartwig JF.
J. Am. Chem. Soc.
2006,
128:
9642
16
Milstein D.
Stille JK.
J. Am. Chem. Soc.
1979,
101:
4981
17
Larock RC.
Leung W.-Y.
Stoltz-Dunn S.
Tetrahedron Lett.
1989,
30:
6629
18
Fournet G.
Balme G.
Gore J.
Tetrahedron
1990,
46:
7763
19
Trost BM.
Pfrengle W.
Urabe H.
Dumas J.
J. Am. Chem. Soc.
1992,
114:
1923
20a
Wolfe JP.
Rossi MA.
J.
Am. Chem. Soc.
2004,
126:
1620
20b
Hay MB.
Hardin AR.
Wolfe JP.
J. Org. Chem.
2005,
70:
3099
21 Rossi, M. A.; Wolfe, J. P. unpublished
results.
22a
Widenhoefer RA.
Zhong HA.
Buchwald SL.
J.
Am. Chem. Soc.
1997,
119:
6787
22b
Widenhoefer RA.
Buchwald SL.
J.
Am. Chem. Soc.
1998,
120:
6504
22c
Mann G.
Hartwig JF.
J. Am. Chem. Soc.
1996,
118:
13109
23 Definitions of ligands (see also Figure
[³ ]
): Dpe-phos = bis[2-(diphenylphosphino)phenyl] ether; Xantphos = 9,9-dimethyl-4,5-bis(diphenylphosphino)-xanthene;
NiXantphos = 4,6-bis(diphenylphosphino)-phenoxazine; dppe = 1,2-bis(diphenylphosphino)ethane; dppp = 1,3-bis(diphenylphosphino)propane;
dppb = 1,4-bis-(diphenylphosphino)butane.
24a
Hay MB.
Wolfe JP.
J.
Am. Chem. Soc.
2005,
127:
16468
24b
Hay MB.
Wolfe JP.
Tetrahedron
Lett.
2006,
47:
2793
25 Yeh has recently described related
carboetherification reactions of dienes, see: Yeh M.-CP.
Tsao W.-C.
Tu
L.-H.
Organometallics
2005,
24:
5909
The insertion of alkenes into palladium-carbon
bonds is not reversible in systems where the alkylpalladium intermediate generated
by carbopalladation contains syn -β-hydrogen atoms,
as β-hydride elimination is generally faster than β-aryl
or β-alkyl elimination. For rare examples of β-aryl
and β-alkyl elimination from Pd(II) complexes that lack β-hydrogen
atoms, see:
26a
Campora J.
Gutierrez-Puebla E.
Lopez JA.
Monge A.
Palma P.
del Rio D.
Carmona E.
Angew.
Chem. Int. Ed.
2001,
40:
3641
26b
Catellani M.
Frignani F.
Rangoni A.
Angew.
Chem., Int. Ed. Engl.
1997,
36:
119
26c
Catellani M.
Fagnola MC.
Angew. Chem., Int.
Ed. Engl.
1994,
33:
2421
26d
Matsumura S.
Maeda Y.
Nishimura T.
Uemura S.
J. Am. Chem. Soc.
2003,
125:
8862
26e
Wang X.
Stankovich SZ.
Widenhoefer RA.
Organometallics
2002,
21:
901 ; and references cited therein
27 For an example of stereochemical
inversion in an isolated palladium complex that proceeds through
a similar mechanism, see: Burke BJ.
Overman LE.
J. Am. Chem. Soc.
2004,
126:
16820
28 A small amount of a regioisomer analogous
to 18 was also formed in this reaction.
For related examples of stereospecific
deuterium migration via reversible β-hydride/deuteride
elimination processes, see:
29a
Qian H.
Widenhoefer RA.
J. Am. Chem.
Soc.
2003,
125:
2056
29b See also ref. 15b
29c See also ref. 15d
30a
Ney JE.
Wolfe JP.
Angew.
Chem. Int. Ed.
2004,
43:
3605
30b
Ney JE.
Hay MB.
Yang Q.
Wolfe JP.
Adv. Synth.
Catal.
2005,
347:
1614
31 Lira, R.; Wolfe, J. P. unpublished
results.
32a
Lira R.
Wolfe JP.
J.
Am. Chem. Soc.
2004,
126:
13906
32b
Yang Q.
Ney JE.
Wolfe JP.
Org.
Lett.
2005,
7:
2575
33a
Saito S.
Hatanaka K.
Yamamoto H.
Org. Lett.
2000,
2:
1891
33b
Overman LE.
Owen CE.
Pavan MM.
Richards CJ.
Org.
Lett.
2003,
5:
1809
33c
Taniyama D.
Hasegawa M.
Tomioka K.
Tetrahedron:
Asymmetry
1999,
10:
221
34a
Bordwell FG.
Algrim DJ.
J. Am. Chem. Soc.
1988,
110:
2964
34b
Bordwell FG.
Ji G.-Z.
J. Am. Chem.
Soc.
1991,
113:
8398
34c
Zhang X.-M.
Bordwell FG.
J. Org. Chem.
1994,
59:
6456
35a
Bertrand MB.
Wolfe JP.
Tetrahedron
2005,
61:
6447
35b
Bertrand MB.
Leathen ML.
Wolfe JP.
Org. Lett.
2007,
9:
457
36
Tom NJ.
Simon WM.
Frost HN.
Ewing M.
Tetrahedron Lett.
2004,
45:
905
37 We have recently developed conditions
to effect the Pd-catalyzed carboamination of N -Boc-
and N -acyl-protected substrates bearing
1,1- and 1,2-disubstituted alkenes: Bertrand, M. B.; Neukom, J.
D.; Wolfe, J. P. J. Org. Chem. 2008 , in press; DOI: 10.1021/jo801631v.
38
Bertrand MB.
Wolfe JP.
Org. Lett.
2007,
9:
3073
For Pd-catalyzed reactions of aryl
bromides with norbornene and related bicyclo[2.2.n]alkenes
which afford benzocyclobutene products, see:
39a
Catellani M.
Chiusoli GP.
Ricotti S.
J.
Organomet. Chem.
1985,
296:
C11
39b
Catellani M.
Chiusoli GP.
Ricotti S.
Sabini F.
Gazz. Chim. Ital.
1985,
115:
685
39c
Catellani M.
Ferioli L.
Synthesis
1996,
769
40
Ney JE.
Wolfe JP.
J. Am. Chem. Soc.
2005,
127:
8644
For a discussion of the kinetic
and thermodynamic effects in palladium amido complex formation,
see:
41a
Meyers C.
Maes BUW.
Loones KTJ.
Bal G.
Lemiere GLF.
Dommisse RA.
J.
Org. Chem.
2004,
69:
6010
41b
Driver MS.
Hartwig JF.
Organometallics
1997,
16:
5706
42 When NaOt -Bu
was employed as the base with N -Boc-
or
N -acyl-protected substrates,
the amido complex could also be generated via the reaction of 58 with the deprotonated carbamate or amide.
In addition, the amido complex could also be generated through the
reaction of the amine, carbamate, or amide with an Ln Pd(Ar)(Ot -Bu) complex, see: Shekhar S.
Hartwig JF.
Organometallics
2007,
26:
340
β-Heteroatom elimination
from Pd complexes has been previously observed. Thus, it is likely
that the syn -oxypalladation and syn -aminopalladation reactions described
in this article are reversible, see:
43a
Hacksell U.
Daves GD.
Organometallics
1983,
2:
772
43b
Zhu G.
Lu X.
Organometallics
1995,
14:
4899
43c
Zhao H.
Ariafard A.
Lin Z.
Organometallics
2006,
25:
812 ; and references cited therein
For early examples, see:
44a
Kasahara A.
Izumi T.
Takeda T.
Imamura H.
Bull. Chem. Soc. Jpn.
1974,
47:
183
44b
Andersson C.-M.
Larsson J.
Hallberg A.
J.
Org. Chem.
1990,
55:
5757
For a recent review, see:
44c
Oestreich M.
Eur.
J. Org. Chem.
2005,
783
For recent reviews, see:
45a
Campeau L.-C.
Fagnou K.
Chem. Commun.
2006,
1253
45b
Catellani M.
Synlett
2003,
298
46a
Zhang L.
Zetterberg K.
Organometallics
1991,
10:
3806
46b
Oestreich M.
Dennison PR.
Kodanko JJ.
Overman LE.
Angew.
Chem. Int. Ed.
2001,
40:
1439
46c
Clique B.
Fabritius C.-H.
Couturier C.
Monteiro N.
Balme G.
Chem.
Commun.
2003,
272
47
Lee C.-W.
Oh KS.
Kim KS.
Ahn KH.
Org. Lett.
2000,
2:
1213
48a
Gillie A.
Stille JK.
J.
Am. Chem. Soc.
1980,
102:
4933
48b
Driver MS.
Hartwig JF.
J.
Am. Chem. Soc.
1997,
119:
8232
48c
Driver MS.
Hartwig JF.
J.
Am. Chem. Soc.
1996,
118:
7217
48d
Culkin DA.
Hartwig
JF.
Organometallics
2004,
23:
3398 ; and references cited therein
48e
van Leeuwen PWNM.
Kamer PCJ.
Reek JNH.
Dierkes P.
Chem. Rev.
2000,
100:
2741
48f
Christmann U.
Vilar R.
Angew. Chem. Int. Ed.
2005,
44:
366
48g
Brown JM.
Cooley NA.
Chem.
Rev.
1988,
88:
1031
49a
Jensen DR.
Schultz MJ.
Mueller JA.
Sigman
MS.
Angew. Chem. Int. Ed.
2003,
42:
3810
49b
Steinhoff BA.
Stahl SS.
Org.
Lett.
2002,
4:
4179 ;
and references cited therein
Ligand substitution reactions of
d8 -Pd(II) complexes generally occur via an associative
mechanism, see:
50a See also ref. 29a
50b
Shultz LH.
Tempel DJ.
Brookhart M.
J. Am. Chem. Soc.
2001,
123:
11539 ; and references cited therein. For rare
exceptions, see:
50c
Bartolome C.
Espinet P.
Martin-Alvarez JM.
Villafane F.
Eur. J. Inorg.
Chem.
2004,
2326
50d
Louie J.
Hartwig JF.
J. Am. Chem. Soc.
1995,
117:
11598
51 For the isolation of this compound,
see: Schwartz RE.
Liesch J.
Hensens O.
Zitano L.
Honeycutt S.
Garrity G.
Fromtling RA.
Onishi J.
Monaghan R.
J. Antibiot.
1988,
41:
1774
52a
Johnson JH.
Phillipson DW.
Kahle AD.
J.
Antibiot.
1989,
42:
1184
52b
Kasahara K.
Yoshida M.
Eishima J.
Takesako K.
Beppu T.
Horinouchi S.
J. Antibiot.
1997,
50:
267
52c
Achenbach TV.
Slater
PE.
Brummerhop H.
Bach T.
Müller R.
Antimicrob. Agents
Chemother.
2000,
44:
2794
52d
Kinzy TG.
Harger JW.
Carr-Schmid A.
Kwon J.
Shastry M.
Justice M.
Dinman JD.
Virology
2002,
300:
60
53 For a recent review, see: Basler B.
Brandes S.
Spiegel A.
Bach T.
Top. Curr.
Chem.
2005,
243:
1
Three strategies allow the installation
of the aryl moiety within 1-3 steps of the final target.
Davis generated the C-2 benzyl group in the final step by the reaction
of lithium diphenylcuprate with a pyrrolidinylmethyl iodide (40% yield,
single diastereomer; 10 steps total, 9% overall yield), see:
54a
Davis FA.
Deng J.
Tetrahedron
2004,
60:
5111
Davis has also installed the benzyl moiety through the Horner-Wadsworth-Emmons
reaction of a 3-oxopyrrolidin-2-ylphosphonate followed by a two-step
reduction sequence (43% yield over 3 steps; 10 steps total,
25% overall yield), see:
54b
Davis FA.
Zhang J.
Qiu H.
Wu Y.
Org. Lett.
2008,
10:
1433
Bach employed the Paternò-Büchi
reaction of benzaldehyde with a dihydropyrrole (4:1 dr, 53% yield after
separation of the diastereomers) followed by a two-step deprotection
sequence to generate the benzyl substituent (39% yield
over 3 steps; 9 steps total, 11% overall yield), see:
54c
Bach T.
Brummerhop H.
Angew. Chem. Int. Ed.
1998,
37:
3400
This model is also consistent with
the stereochemical outcome of reactions involving analogous γ-(arylamino)-alkenes.
For further discussion of A(¹,³) -strain
in transformations involving N-substituted amines, see:
55a
Hoffmann RW.
Chem. Rev.
1989,
89:
1841
55b
Hart DJ.
J. Am. Chem. Soc.
1980,
102:
397
55c
Williams
RM.
Sinclair PJ.
Zhai D.
Chen D.
J. Am. Chem.
Soc.
1988,
110:
1547
55d
Kano S.
Yokomatsu T.
Iwasawa H.
Shibuya S.
Heterocycles
1987,
26:
2805
56
Bertrand MB.
Wolfe JP.
Org. Lett.
2006,
8:
2353
57a
Fritz JA.
Nakhla JS.
Wolfe JP.
Org.
Lett.
2006,
8:
2531
57b
Fritz JA.
Wolfe JP.
Tetrahedron
2008,
64:
6838
58
Kazmierski WM.
Furfine E.
Gray-Nunez Y.
Spaltenstein A.
Wright L.
Bioorg.
Med. Chem. Lett.
2004,
14:
5685
59
Heidempergher F.
Pillan A.
Pinciroli V.
Vaghi F.
Arrigoni C.
Bolis G.
Caccia C.
Dho L.
McArthur R.
Varasi M.
J. Med. Chem.
1997,
40:
3369
60
Shue H.-J.
Chen X.
Schwerdt JH.
Paliwal S.
Blythin DJ.
Lin L.
Gu D.
Wang C.
Reichard GA.
Wang H.
Piwinski JJ.
Duffy RA.
Lachowicz JE.
Coffin VL.
Nomeir AA.
Morgan CA.
Varty GB.
Shih N.-Y.
Bioorg.
Med. Chem. Lett.
2006,
16:
1065
61a
Davies SG.
Evans GB.
Mortlock AA.
Tetrahedron:
Asymmetry
1994,
5:
585
61b
Kubota H.
Kubo A.
Takahashi M.
Shimizu R.
Da-te T.
Okamura K.
Nunami K.-i.
J.
Org. Chem.
1995,
60:
6776
61c
Parisi M.
Solo A.
Wulff WD.
Guzei IA.
Rheingold AL.
Organometallics
1998,
17:
3696
61d
Kise N.
Ueda T.
Kumada K.
Terao Y.
Ueda N.
J. Org. Chem.
2000,
65:
464
62a
Guillena G.
Nájera C.
J.
Org. Chem.
2000,
65:
7310
62b
Cardillo G.
Orena M.
Penna M.
Sandri S.
Tomasini C.
Tetrahedron
1991,
47:
2263
62c
Trost BM.
Fandrick DR.
J.
Am. Chem. Soc.
2003,
125:
11836
For a review, see:
63a
Sartori G.
Maggi R. In Science
of Synthesis
Vol. 18:
Ley SV.
Knight JG.
Thieme;
Stuttgart:
2005.
p.665
For other recent approaches to the synthesis of cyclic ureas,
see:
63b
Kim M.
Mulcahy JV.
Espino CG.
DuBois J.
Org. Lett.
2006,
8:
1073
63c
Streuff J.
H övelmann CH.
Nieger M.
Muñiz K.
J.
Am. Chem. Soc.
2005,
127:
14586
63d
Zabawa TP.
Kasi D.
Chemler SR.
J. Am. Chem. Soc.
2005,
127:
11250
63e
Kim MS.
Kim Y.-W.
Hahm HS.
Jang
JW.
Lee WK.
Ha H.-J.
Chem.
Commun.
2005,
3062 ; and
references cited therein
63f
Bar GLJ.
Lloyd-Jones GC.
Booker-Milburn KI.
J. Am. Chem.
Soc.
2005,
127:
7308
For syntheses of cyclic ureas from
acyclic N -allylureas that form both a
carbon-carbon and a carbon-nitrogen bond, see:
64a See also Ref. 6c.
64b
Tamaru Y.
Hojo M.
Higashimura H.
Yoshida Z.-i.
J. Am. Chem. Soc.
1988,
110:
3994
64c
Danishefsky S.
Taniyama E.
Webb
RR.
Tetrahedron Lett.
1983,
24:
11
65a
Ishiyama H.
Tsuda M.
Endo T.
Kobayashi J.
Molecules
2005,
10:
312
65b
Minter AR.
Brennan BB.
Mapp AK.
J. Am. Chem. Soc.
2004,
126:
10504
65c
Palmer GC.
Ordy MJ.
Simmons RD.
Strand JC.
Radov LA.
Mullen GB.
Kinsolving CR.
St. Georgiev V.
Mitchell JT.
Allen SD.
Antimicrob. Agents Chemother.
1989,
33:
895
66 For a review on the use of isoxazolidines
as intermediates in complex molecule syntheses, see: Frederickson M.
Tetrahedron
1997,
53:
403
67a
Lait SM.
Rankic DA.
Keay BA.
Chem. Rev.
2007,
107:
767
67b
Revuelta J.
Cicchi S.
Brandi A.
Tetrahedron
Lett.
2004,
45:
8375
67c
LeBel NA.
Balasubramanian N.
J.
Am. Chem. Soc.
1989,
111:
3363
67d
Iida H.
Kasahara K.
Kibayashi C.
J.
Am. Chem. Soc.
1986,
108:
4647
For reviews on 1,3-dipolar cycloaddition
reactions of nitrones, see:
68a
Confalone PN.
Huie EM.
Org.
React.
1988,
36:
1
68b
Gothelf KV.
Jorgensen KA.
Chem. Commun.
2000,
1449
68c
Kanemasa S.
Synlett
2002,
1371
69
Murahashi S.-I.
Mitsui H.
Shiota T.
Tsuda T.
Watanabe S.
J.
Org. Chem.
1990,
55:
1736
70
Biloski AJ.
Ganem B.
Synthesis
1983,
537
71
Hay MB.
Wolfe JP.
Angew. Chem. Int. Ed.
2007,
46:
6492
72 For related studies, see: Jiang D.
Peng J.
Chen Y.
Tetrahedron
2008,
64:
1641
For Pd-catalyzed carboamination
reactions of O -butenyl-hydroxylamine
derivatives with aryl bromides that afford isoxazolidine products,
see:
73a
Peng J.
Jiang D.
Lin W.
Chen Y.
Org. Biomol. Chem.
2007,
5:
1391
73b
Peng J.
Lin W.
Yuan S.
Chen Y.
J. Org. Chem.
2007,
72:
3145
73c
Dongol KG.
Tay BY.
Tetrahedron
Lett.
2006,
47:
927
74 For Pd-catalyzed carboetherification
reactions of β,γ-unsaturated oximes with aryl
bromides which afford isoxazoline products, see: Jiang D.
Peng J.
Chen Y.
Org. Lett.
2008,
10:
1695
75
Iida H.
Watanabe Y.
Kibayashi C.
J.
Chem. Soc., Perkin Trans. 1
1985,
261
76
Nilsson JW.
Thorstensson F.
Kvarnström I.
Oprea T.
Samuelsson B.
Nilsson I.
J. Comb.
Chem.
2001,
3:
546
77a
Chu-Moyer MY.
Ballinger WE.
Beebe DA.
Berger R.
Coutcher JB.
Day WW.
Li J.
Mylari BL.
Oates PJ.
Weekly RM.
J. Med. Chem.
2002,
45:
511
77b
Zheng G.
Dwoskin LP.
Deaciuc AG.
Zhu J.
Jones MD.
Crooks PA.
Bioorg.
Med. Chem.
2005,
13:
3899
78a
Schanen V.
Cherrier M.-P.
de Melo SJ.
Quirion
J.-C.
Husson H.-P.
Synthesis
1996,
833
78b
Mickelson
JW.
Belonga KL.
Jacobsen EJ.
J. Org. Chem.
1995,
60:
4177
78c
Mickelson JW.
Jacobsen EJ.
Tetrahedron: Asymmetry
1995,
6:
19
78d
Cochran BM.
Michael FE.
Org.
Lett.
2008,
10:
329
79
Jung ME.
Piizzi G.
Chem. Rev.
2005,
105:
1735
80
Ma D.
Zhang Y.
Yao J.
Wu S.
Tao F.
J. Am. Chem. Soc.
1998,
120:
12459
81 DEPBT = 3-(diethoxyphosphoryloxy)-1,2,3-benzotriazin-4(3H )-one. The use of other reagents (e.g.,
DCC/HOBt or CDI) resulted in partial epimerization to afford
products with ca. 85-90% ee, see: Li H.
Jiang X.
Ye Y.-h.
Fan C.
Romoff T.
Goodman M.
Org. Lett.
1999,
1:
91
82 Surprisingly, the stereochemical outcome
of the piperazine-forming reactions is opposite to that predicted
by the allylic strain model, similar to that shown in Scheme
[¹¹ ]
. Our current working
hypothesis suggests that the piperazine-forming reactions proceed
through a transition state in which the N -aryl
group is rotated to minimize allylic strain interactions, and the
structure around the cyclizing nitrogen atom is pyramidal. Investigations
into this hypothesis are currently underway.
83
Nakhla JS.
Wolfe JP.
Org. Lett.
2007,
9:
3279