References and Notes
-
1a
Hayashi T. In Comprehensive
Asymmetric Catalysis
Vol. 1:
Jacobsen EN.
Pfaltz A.
Yamamoto H.
Springer;
New
York:
1999.
p.349
-
1b
Hayashi T.
Matsumoto Y.
Ito Y.
J.
Am. Chem. Soc.
1989,
111:
3426
-
1c
Hayashi T.
Matsumoto Y.
Ito Y.
Tetrahedron: Asymmetry
1991,
2:
601
-
1d
Tucker CE.
Davidson J.
Knochel P.
J. Org. Chem.
1992,
57:
3482
-
1e
Brown
JM.
Hulmes DE.
Layzell TP.
J. Chem. Soc., Chem. Commun.
1993,
1673
-
1f
Togni A.
Breutel C.
Schnyder A.
Spindler F.
Landert H.
Tijani A.
J. Am. Chem. Soc.
1994,
116:
4062
-
1g
Fernandez E.
Maeda K.
Hooper
MW.
Brown JM.
Chem.
Eur. J.
2000,
6:
1840
-
1h
Demay S.
Volant F.
Knochel P.
Angew.
Chem. Int. Ed.
2001,
40:
1235
-
1i
Kwong FY.
Yang Q.
Mak
TCW.
Chan ASC.
Chan KS.
J. Org. Chem.
2002,
67:
2769
-
1j
Crudden CM.
Edwards D.
Eur. J.
Org. Chem.
2003,
4695
- 2
Endo K.
Hirokami M.
Shibata T.
Organometallics
2008,
27:
5390
-
3a
Westcott SA.
Blom HP.
Marder TB.
Baker RT.
J. Am. Chem. Soc.
1992,
114:
8863
-
3b
Doucet H.
Fernandez E.
Layzell TP.
Brown JM.
Chem. Eur. J.
1999,
5:
1320
-
3c
Chen A.
Ren L.
Crudden CM.
J.
Org. Chem.
1999,
64:
9704
-
3d
Murata M.
Kawakita K.
Asana T.
Watanabe S.
Masuda Y.
Bull.
Chem. Soc. Jpn.
2002,
75:
825
-
3e
Crudden CM.
Hleba YB.
Chen AC.
J. Am. Chem. Soc.
2004,
126:
9200
-
3f
Segarra AM.
Daura-Oller E.
Claver C.
Poblet JM.
Bo C.
Fernández E.
Chem.
Eur. J.
2004,
10:
6456
-
3g
Moteki SA.
Wu D.
Chandra KL.
Reddy DS.
Takacs JM.
Org. Lett.
2006,
8:
3097
-
3h
Carroll A.-M.
O’Sullivan TP.
Guiry PJ.
Adv. Synth. Catal.
2005,
347:
609
-
3i
Edwards DR.
Hleba YB.
Lata CJ.
Calhoun LA.
Crudden CM.
Angew. Chem. Int.
Ed.
2007,
46:
7799
-
6a
Westcott S.
Marder TB.
Organometallics
1993,
12:
975
-
6b
Brown JM.
Lloyd-Jones GC.
J.
Am. Chem. Soc.
1994,
116:
866
-
9a
Fu GC.
Acc. Chem. Res.
2004,
37:
542
-
9b
Fu GC.
Acc.
Chem. Res.
2006,
39:
853
4 The preliminary examination for hydroboration
typically proceeds regioselectively in the presence of DPPB as a ligand.
Other ligands often diminished the regioselectivity; see refs. 1c,
2, and 3e.
5 The reaction with catecholborane (HBcat)
for 10 min gave a regioisomeric mixture of 1-phenylethanol and 2-phenylethanol
in 83% yield with 77:23 ratio after the oxidation of the
crude boronate compounds.
7 The reaction of 1,2-disubstituted olefin,
such as cis-stilbene, gave lower yield
along with the formation of reduction product. The reaction of 1-hexene
under the same reaction conditions for 10 min as entry 6 in Table
[¹]
gave the linear product
in 65% yield (unoptimized).
8 These reactions without DMAP additive
gave the corresponding products as a mixture of 2g and 3g in 29% yield with 21:79 ratio
and 2h and 3h in
8% yield with 13:87 ratio.
10 The ESI-MS analyses of the mixture
of [RhCl(cod)]2, DPPB (2 equiv), and
DMAP (4 equiv) gave a single peak as a [Rh + DPPB + (DMAP)2]+ (m/z calcd: 773.2 (100%);
found: 773.3). Thus, the coordination of DMAP to Rh(I) center is probable
under the present catalysis. The ³¹P
NMR analysis in CDCl3 (phosphoric acid as external reference)
of a mixture of [RhCl(cod)]2, DPPB
(2 equiv), and DMAP (4 equiv) gave a single peak at δ = 18.64
(d, J
Rh-P = 99.2
Hz, 2 P). A mixture of [RhCl(cod)]2,
DPPB (2 equiv), and DMAP (2 equiv) gave four peaks at δ = 20.85
(d, J
Rh-P = 110.2
Hz), 20.69 (d, J
Rh-P = 110.2
Hz), 17.98 (d, J
Rh-P = 101 Hz),
17.82 (d, J
Rh-P = 101
Hz). In contrast, a mixture of [RhCl(cod)]2 and
DPPB (2 equiv) gave many peaks (not specified). These results offer
the formation of monomeric [Rh(dppb)(dmap)2]Cl
as an intermediate. We assume that the strong σ-donation
ability of DMAP is favorable, but the details should be examined
to determine the role of DMAP.