References and Notes
1a
Jain N.
Kanojia RM.
Xu J.
Jian-Zhong G.
Pacia E.
Lai M.-T.
Du F.
Musto A.
Allan G.
Hahn D.
Lundeen S.
Sui Z.
J. Med. Chem.
2006,
49:
3056
1b
Sarkar FH.
Li Y.
Cancer Metastasis
Rev.
2002,
25:
265
1c
Fwu S.-Y.
Chang C.-Y.
Huang L.-J.
Teng
C.-M.
Wang J.-P.
Chen S.-C.
Kuo S.-C.
Chin.
Pharm. J. (Taipei)
1999,
34:
255
1d
Emmanuel T.
Dieudonne N.
Tanyi MJ.
Tanee FZ.
Albert K.
Jean-Claude M.
Rosa GM.
Carmen RM.
Salvador M.
Luis RJ.
J. Nat. Prod.
2003,
66:
891
1e
Lozovaya VV.
Lygin AV.
Zernova OV.
Li S.
Hartman GL.
Widholm JM.
Plant Phys.
Biochem.
2004,
42:
671
1f
Kuroda M.
Mimaki Y.
Sashida Y.
Mae T.
Kishida H.
Nishiyama T.
Tsukagawa M.
Konishi E.
Takahashi K.
Kawada T.
Nakagawa K.
Kitahara M.
Bioorg. Med. Chem. Lett.
2003,
13:
4267
1g
Martinez RM.
Gimenez I.
Lou JM.
Mayoral JA.
Alda JO.
Am. J. Clin. Nutr.
1998,
68
(S1):
1354S
2a
Miyase T.
Sano M.
Nakai H.
Muraoka M.
Nakazawa M.
Suzuki M.
Yoshino K.
Nishihara Y.
Tanai J.
Phytochemistry
1999,
52:
303
2b
Gamble JR.
Xia P.
Hahn CN.
Drew JJ.
Drogemuller CJ.
Brown D.
Vadas MA.
Int. J. Cancer
2006,
118:
2412
2c
Alvero AB.
O’Malley D.
Brown D.
Kelly G.
Garg M.
Chen W.
Rutherford T.
Mor G.
Curr. Oncol. Rep.
2006,
8:
104
3
Grese TA.
Pennington LD.
Tetrahedron Lett.
1995,
36:
8913
4a
Cook CE.
Twine CE.
J. Chem. Soc., Chem. Commun.
1968,
791
4b
Cook CE.
Wall ME.
J.
Org. Chem.
1968,
33:
2998
4c
Cook CE.
Corley RC.
Wall ME.
J. Org. Chem.
1965,
30:
4114
5
Alberola A.
Andres C.
Ortega AG.
Pedrosa R.
Vicente M.
J.
Heterocycl. Chem.
1986,
23:
1781
6
Varma RS.
Dahiya R.
J. Org. Chem.
1998,
63:
8038
7
Gauthier S.
Caron B.
Cloutier J.
Dory YL.
Favre A.
Larouche D.
Mailhot J.
Ouellet C.
Schwerdtfeger A.
Leblanc G.
Martel C.
Simard J.
Merand Y.
Belanger A.
Labrie C.
Labrie F.
J. Med. Chem.
1997,
40:
2117
8a Trityl
perchlorate has been used previously to access chromylium salts
from the dihydro precursors8b but not, as far as we can
ascertain, from 2-unsubstituted isoflav-3-enes. Isoflavylium salts
can also be made, for example, by ring construction8c or
by trityl salt mediated elimination of 2-substituted isoflav-3-enes8d
8b
Canalini G.
Degani I.
Fochi R.
Spunta G.
Ann. Chim. (Rome)
1967,
57:
1045
8c
Bouvier P.
Andrieux J.
Molho D.
Tetrahedron
Lett.
1974,
1033
8d
Dean FM.
Varma RS.
J.
Chem. Soc., Perkin Trans. 1
1982,
1193
9a Compound 1a is accessible from the commercially available
precursors daidzein9c or daidzein diacetate9d,e
9b
Faragalla JE.
PhD Thesis
University of Wollongong;
Australia:
2005.
9c Heaton A, and Jeoffreys G. inventors; WO 2005103025.
; Chem. Abstr. 2005, 143, 422198
9d Heaton A, and Kumar N. inventors; WO 2000049009.
; Chem. Abstr. 2000, 133, 177059
9e
Liepa AJ.
Aust. J. Chem.
1981,
34:
2647
10
General Procedure
(Table 1, Entry 3)
A mixture of powdered 3 Å MS,
trityl hexafluorophosphate (2.2 mmol), and the isoflavene 1b (503 mg, 1.55 mmol) in freshly distilled,
anhyd CH2Cl2 (50 mL, from CaH2)
was stirred at r.t. under nitrogen for 30 min. Trimethylsilyl cyanide
(0.480 g, 4.8 mmol) was then added, and the reaction mixture was
stirred for a further hour at r.t. The reaction mixture was then
filtered, washed with CH2Cl2, concentrated
under vacuum filtration, and subjected to silica gel chromatography,
using CH2Cl2 as the mobile phase to afford
the product as a colorless crystalline solid (431 mg, 80%).
11
Doodeman R.
Rutjes FPJT.
Hiemstra H.
Tetrahedron Lett.
2000,
41:
5979
12 Deprotection of TBS ethers by the
related trityl tetrafluoroborate has been reported with the anion
acting as a fluoride ion source. See: Metcalf BW.
Burkhart JP.
Jund K.
Tetrahedron Lett.
1980,
21:
35
13
General Procedure
(Table 2, Entry 1)
A mixture of powdered 3 Å MS,
trityl hexafluorophosphate (2.2 mmol), and the isoflavene 1b (451 mg, 1.39 mmol) in freshly distilled,
anhyd CH2Cl2 (50 mL, from CaH2)
was stirred at r.t. under nitrogen for 30 min. The commercially available
2-trimethylsilylthiazole (0.403g, 2.564 mmol) was then added and
the reaction mixture was stirred for a further hour at r.t. The
reaction mixture was then filtered, washed with CH2Cl2,
concentrated under vacuum filtration, and subjected to silica gel
chromatography, using CH2Cl2 as the mobile
phase to afford the product as a creamy white solid (430 mg, 76%).
14
Data for Selected
Compounds7-Acetoxy-3-
p
-acetoxyphenyl-2-cyano-2
H
-1-benzopyran (7b)
White
solid; mp 156-158 ˚C. ¹H
NMR (500 MHz, CDCl3): δ = 7.49
(d, J = 8.7
Hz, 2 H, H-2′/6′), 7.23 (d, J = 8.0 Hz,
1
H, H-5), 7.18 (d, J = 8.6
Hz, 2 H, H-3′/5′), 6.97 (s, 1 H, H4),
6.85 (dd, J = 2.5,
8.1 Hz, 1 H, H-6), 6.84 (s, 1 H, H-8), 6.01
(s, 1 H, H-2), 2.32 (s, 3 H, CH3), 2.30 (s, 3 H, CH3). ¹³C NMR
(75 MHz, CDCl3): δ = 169.1
(C=O), 168.9 (C=O), 151.9 (C7), 151.1 (C8a), 150.3
(C4′), 131.9 (C3), 128.3 (C5), 126.2 (C2′), 125.9
(C1′), 122.4 (C3′), 122.3 (C4), 119.1 (C4a), 117.0
(C6), 110.5 (C8), 64.3 (C2), 21.1 (CH3). MS (CI+): m/z (%) = 323
(100) [MH+ - HCN].
Anal. Calcd (%) for C20H15NO5:
C, 68.76; H, 4.33; N, 4.01. Found: C, 69.20; H, 4.34; N, 3.67.
7-Acetoxy-3-
p
-acetoxyphenyl-2-(2-thiazoyl)-2
H
-1-benzopyran
(8a)
Creamy white solid; mp 136-138 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 7.60
(br d, J = 2.7
Hz, 1 H, H-2′′), 7.37 (d, J = 8.7
Hz, 2 H, H-2′/6′), 7.23 (d, J = 6.3 Hz,
1 H, H-5), 7.08 (d, J = 2.7
Hz, 1 H, H-3′′), 6.93 (d, J = 8.4
Hz, 2 H, H-3′/5′), 6.89 (s, 1 H, H4),
6.57 (dd, J = 2.7,
8.4 Hz, 1 H, H-6), 6.53 (d, J = 2.4 Hz,
1 H,H-8), 6.44 (br s, 1 H, H-2), 2.13 (s, 3 H, CH3),
2.10 (s, 3 H, CH3). ¹³C
NMR (75 MHz, CDCl3): δ = 169.5
(C=O), 169.3 (C=O), 169.3 (C1′′),
151.8 (C7), 151.7 (C8a), 150.8 (C4′), 143.3 (C4′′),
134.0 (C3), 131.5 (C1′), 127.9 (C5), 126.9 (C2′),
122.2 (C3′), 121.1 (C3′′), 120.9 (C4),
120.2 (C4a), 115.7 (C6), 110.6 (C8), 74.7 (C2), 21.3 (CH3).
HRMS (CI+): m/z calcd
for [M + H]+ C22H17NO5S + H:
408.0906; found: 408.0887.
7-Acetoxy-3-
p
-acetoxyphenyl-2-ethoxy-2
H
-1-benzopyran
(8f)
Creamy white solid; mp 134-136 ˚C. ¹H
NMR (300 MHz, CDCl3): d = 7.53
(d, J = 9.0
Hz, 2 H, H-2′/6′), 7.23 (d, J = 8.4 Hz,
1 H, H-5), 7.12 (d, J = 8.4
Hz, 2 H, H-3′/5′), 6.98 (s, 1 H, H-4),
6.82 (d, J = 2.1
Hz, 1 H, H-8), 6.76 (dd, J = 8.4,
2.1 Hz, 1 H, H6), 5.95 (s, 1 H, H-2), 4.04-3.96 (m, 1 H,
OCH
2CH3), 3.82-3.74
(m, 1 H, OCH
2CH3),
2.32 (s, 3 H, CH
3CO), 2.30
(s, 3 H, CH
3CO), 1.25 (t, J = 7.2 Hz,
3 H, CH2CH
3). ¹³C
NMR (75 MHz, CDCl3): d = 169.5
(C=O), 169.3 (C=O), 151.4 (C7), 151.1 (C8a), 150.6
(C4′), 134.6 (C3), 129.7 (C1′), 128.0 (C5), 126.9
(C2), 122.1 (C3′), 121.5 (C4), 119.6 (C4a), 115.4 (C6),
110.4 (C8), 97.2 (C2), 64.1 (CH2CH3),
21.5 (CH3CO), 15.7 (CH2
CH3). MS (CI+): m/z (%) = 323
(100; 2-unsubstituted isoflavylium ion). Anal. Calcd (%)
for C21H20O6: C, 68.40; H, 5.48.
Found: C, 68.49; H, 5.53.
7-Acetoxy-3-
p
-acetoxyphenyl-2-[2-(7-acetoxy-3-
p
-acetoxyphenyl-2
H
-1-benzopyranyl)ethynyl]-2
H
-1-benzopyran
(9)
Solid; mp 237-238 ˚C
(dec.). ¹H NMR (300 MHz, DMF-d
6; integrations
and assignments for half dimer): d = 7.11
(d, J = 9.0
Hz, 2 H, H-2′/6′), 7.02 (d, J = 8.4 Hz,
1 H, H-5), 6.98 (s, 1 H, H4), 6.73 (dd, J = 2.4,
0.3 Hz, 1 H, H-8), 6.66 (d, J = 9.0 Hz,
1 H, H-3′), 6.53 (s, 1 H, H-2), 6.51 (dd, J = 8.4, 2.4
Hz, 1 H, H6), 1.94 (s, 3 H, CH3), 1.88 (s, 3 H, CH3). ¹³C NMR
(75 MHz, DMSO-d
6): d = 169.2
(C=O), 169.1 (C=O), 151.8 (C7), 150.8 (C8a), 150.2
(C4′), 133.0 (C3), 128.4 (C1′), 128.2 (C5), 126.4
(C2′), 122.2 (C4), 121.5 (C3′), 119.4 (C6), 116.3
(C4a), 110.7 (C8), 92.5 (ethynyl C), 91.7 (C2), 20.4 (CH3),
20.3 (CH3). MS (ES+): m/z (%) = 323
(100; 2-unsubstituted isoflavylium ion). Anal. Calcd (%)
for C41H34O10: C, 69.28; H, 4.60.
Found: C, 69.27; H, 4.62.