Subscribe to RSS
DOI: 10.1055/s-0028-1087558
Synthesis of Novel Spiro Cyclic 2-Oxindole Derivatives of 6-Amino-4H-Pyridazine via [3+3] Atom Combination Utilizing Chitosan as a Catalyst
Publication History
Publication Date:
16 February 2009 (online)
Abstract
Azaenamines were reacted with 3-cyanomethylidene-2-oxindoles using chitosan catalyst to yield spirocyclic 2-oxindole derivatives of 6-amino-4H-pyridazine and fused pyridazinoquinazolines.
Key words
aza-enamine - chitosan - Michael addition - 3-spiropyridazines-2-oxindoles
- 1
Williams RM.Cox RJ. Acc. Chem. Res. 2003, 36: 127 - 2
Da Silva JFM.Garden SJ.Pinto AC. J. Braz. Chem. Soc. 2001, 273 - 3
Fischer C.Meyers C.Carreira EM. Helv. Chim. Acta 2000, 83: 1175 - 4
Alper PB.Meyers C.Lerchner A.Siegel DR.Carreira EM. Angew. Chem. Int. Ed. 1999, 38: 3186 ; and references cited therein - 5
Ashimori A.Bachand B.Overmann LE.Poon DJ. J. Am. Chem. Soc. 1998, 120: 6477 - 6
Matsuura T.Overmann LE.Poon DJ. J. Am. Chem. Soc. 1998, 120: 6500 - 7
Ding K.Lu Y.Nikolovska-Coleska Z.Qiu S.Ding Y.Gao W.Stuckey J.Krajewski K.Roller PP.Tomita Y.Parrish DA.Deschamps JR.Wang S. J. Am. Chem. Soc. 2005, 127: 10130 - 8
Chen C.Li X.Neumann CS.Lo MM.-C.Schreiber SL. Angew. Chem. Int. Ed. 2005, 44: 2249 - 9
Alcaide B.Almendros P.Rodriguez-Acebes R. J. Org. Chem. 2006, 71: 2346 ; and references cited therein - 10
Abdelhamid IA.Ghozlan SAS.Kolshorn H.Meier H.Elnagdi MH. Heterocycles 2007, 71: 2627 - 11
Ghozlan SAS.Abdelhamid IA.Hassaneen HM.Elnagdi MH. J. Heterocycl. Chem. 2007, 44: 105 - 12
Ghozlan SAS.Abdelhamid IA.Elnagdi MH. ARKIVOC 2006, (xiii): 147 - 13
Redkin RG.Shemchuk LA.Chernykh VP.Shishkin OV.Shishkin SV. Tetrahedron 2007, 63: 11444
References and Notes
General Procedures
for Compounds 8a,b and 12
Method
A: A mixture of aza-enamine 4 (10
mmol) and 3-cyanomethylidene-2-oxindoles 3 was
refluxed in EtOH (20 mL) in the presence of piperidine (0.1 mL)
for 3 h. The solvent was evaporated under vacuum, and the crude
product was collected and crystallized from EtOH or EtOH-dioxane.
Method B: A mixture of arylhydrazone 4 (10 mmol) and 3-cyanomethylidene-2-oxindoles 3 was refluxed in EtOH (20 mL) in the presence
of chitosan (0.2 g) for 3 h. The solvent was evaporated under vacuum,
and the crude product was collected and crystallized from EtOH or
EtOH-dioxane. The catalyst chitosan was removed by filtration
prior or during the crystallization process.
4,3′-Spiro(3-acetyl-6-amino-1-phenyl-1 H ,4 H -pyridazine-5-carbonitrile)-2′-oxindole (8a) Mp 262-264 ˚C. IR (KBr): ν = 3444, 3359, 3220 (NH2 and NH), 2190 (CN), 1724, 1623 (2 CO) cm-¹. ¹H NMR (400 MHz, DMSO-d 6): δ = 2.18 (s, 3 H, CH3-CO), 6.14 (br s, 2 H, NH2), 6.83-7.58 (m, 9 H, Ar H), 10.57 (br s, 1 H, indole NH). ¹³C NMR (100 MHz, DMSO-d 6): δ = 24.7 (CH3), 48.5 (spiro C), 59.7 (CCN), 109.5, 118.0 (CN), 122.1, 123.8, 126.6, 128.7, 129, 129.7, 134.4, 139.9, 140.6 (Ar CH), 141.3 (CCOCH3), 149.7 (CNH2), 177 (CONH), 194.8 (CO). MS (EI): m/z (%) = 357 [M+].
16General Method for the Synthesis of Compounds 9 and 10 A solution of each of 4c or 4d (10 mmol) was treated with compound 3a (10 mmol) in pyridine (10 mL). The solution was refluxed for 5 h, then poured onto H2O and acidified with dilute HCl. The solid product obtained was crystallized from EtOH or EtOH-dioxane.
174,3′-Spiro{2-acetyl-6-oxo-3-phenyl-3,5,6,11-tetrahydropyridazino[1,6- a ]quinazoline-4-carbonitrile}-2′-oxindole (9) Mp >300 ˚C. IR (KBr): ν = 3376, 3189 (2 NH), 2196 (CN), 1735, 1693, 1633 (3CO) cm-¹. ¹H NMR (400 MHz, DMSO-d 6): δ = 2.46 (s, 3 H, CH3CO), 6.86-8.00 (m, 8 H, Ar H), 10.78 (br s, 1 H, indole NH), 11.79 (br s, 1 H, pyrimidine NH). ¹³C NMR (100 MHz, DMSO-d 6): δ = 25.5 (CH3), 49.6 (spiro C), 66.4 (CCN), 109.7, 114.4, 114.9, 115.7 (CN), 122.3, 124.8, 126.8, 127.3, 129.9, 133.5, 139.7, 141.2, 142,5, (Ar CH), 141.3 (CCOCH3), 149.7 (CNH2), 162, 176.2 (2 CONH), 194.0 (CO). MS (EI): m/z (%) = 383 [M+].
184,3′-Spiro(ethyl 3-acetyl-6-amino-1-phenyl-1 H ,4 H -pyridazine-5-carboxylate)-2′-oxindole (12) Mp 244-246 ˚C. IR (KBr): ν = 3496, 3428, 3237 (NH2 and NH), 1720, 1644, 1608 (3 CO) cm-¹. ¹H NMR (400 MHz, DMSO-d 6): δ = 0.87 (t, 3 H, CH3, J = 7.2 Hz), 2.11 (s, 3 H, CH3CO), 4.2 (q, 2 H, CH2, J = 7.2 Hz), 6.71 (br s, 2 H, NH2), 6.86-7.89 (m, 9 H, Ar H), 10.31 (br s, 1 H, indole NH). ¹³C NMR (100 MHz, DMSO-d 6): δ = 13.2 (CH3), 25.4 (CH3), 48.6 (CH2), 56.9 (spiro C), 76.5 (CCN), 108.5, 119.3, 126.9, 128.7, 129.9, 132.8, 136,9, 141.1, 142.9, 143.1 (Ar CH), 144.5 (CCOCH3), 149.4 (CNH2), 167.9 (CONH), 179.1 (CO2Et), 194.8 (CO). MS (EI): m/z (%) = 404 [M+].
19
Spectral Data
of Compound 13
Mp 285 -287 ˚C.
IR (KBr): ν = 3120, 3245, 1646 cm-¹.
¹H
NMR (400 MHz, DMSO-d
6): δ = 1.21
(t, 3 H, CH3, J = 7.2
Hz), 2.62 (s, 3 H, CH3CO), 4.25 (q, 2 H, CH2, J = 7.2 Hz)
6.84-7.84 (m, 9 H, Ar H), 9.00 (s, 1 H), 13.40 (br s,
1
H). ¹³C NMR (100 MHz, DMSO-d
6): δ = 14.1,
15.5, 63.8, 73, 116.8, 118.6, 119.6, 120.9, 121, 123.3, 123.9, 124.5, 125.5,
128.1, 128.8, 136.3, 139.8, 145.6, 155.7, 165.8. MS (EI): m/z (%) = 386 [M+].