References and Notes
1 A recent review for chiral phosphine
ligands on a spiro scaffold: Xie J.-H.
Zhou Q.-L.
Acc. Chem. Res.
2008,
41:
581
Most of the reported efficient spiro
chiral ligands have a 1,1′-spirobiindane backbone. For
examples, see:
2a
Birman
VB.
Rheingold AL.
Lam K.-C.
Tetrahedron: Asymmetry
1999,
10:
125
2b
Hu A.-G.
Fu Y.
Xie J.-H.
Zhou H.
Wang L.-X.
Zhou Q.-L.
Angew.
Chem. Int. Ed.
2002,
41:
2348
2c
Xie J.-H.
Wang L.-X.
Fu Y.
Zhu
S.-F.
Fan B.-M.
Duan H.-F.
Zhou Q.-L.
J. Am.
Chem. Soc.
2003,
125:
4404
2d
Xie J.-H.
Duan H.-F.
Fan B.-M.
Cheng X.
Wang L.-X.
Zhou Q.-L.
Adv. Synth. Catal.
2004,
346:
625
2e
Zhu S.-F.
Yang Y.
Wang L.-X.
Liu B.
Zhou Q.-L.
Org. Lett.
2005,
7:
2333
2f
Cheng X.
Zhang Q.
Xie J.-H.
Wang L.-X.
Zhou Q.-L.
Angew. Chem.
Int. Ed.
2005,
44:
1118
2g
Zhu S.-F.
Xie J.-B.
Zhang Y.-Z.
Li S.
Zhou Q.-L.
J.
Am. Chem. Soc.
2006,
128:
12886
2h
Chen C.
Zhu S.-F.
Liu B.
Wang L.-X.
Zhou Q.-L.
J. Am.
Chem. Soc.
2007,
129:
12616
Examples of spiro chiral ligands
other than those listed in ref. 2:
3a
Jiang Y.
Mi A.
Yan M.
Sun J.
Lou R.
Deng J.
J.
Am. Chem. Soc.
1997,
119:
9570
3b
Arai MA.
Arai T.
Sasai H.
Org.
Lett.
1999,
1:
1795
3c
Arai MA.
Kuraishi M.
Arai T.
Sasai H.
J. Am. Chem.
Soc.
2001,
123:
2907
3d
Wu S.-L.
Zhang W.-C.
Zhang Z.-G.
Zhang X.-M.
Org. Lett.
2004,
6:
3565
3e
Lin CW.
Lin C.-C.
Lam LF.-L.
Au-Yeung TT.-L.
Chan ASC.
Tetrahedron Lett.
2004,
45:
7379
3f
Lait SM.
Parvez M.
Keay BA.
Tetrahedron: Asymmetry
2004,
15:
155
3g
Guo Z.
Guan X.
Chen Z.
Tetrahedron:
Asymmetry
2006,
17:
468
3h
Koranne PS.
Tsujihara T.
Arai MA.
Bajracharya GB.
Suzuki T.
Onitsuka K.
Sasai H.
Tetrahedron: Asymmetry
2007,
18:
919
Recent reviews on nitrogen-containing
chiral ligands:
4a
Fache F.
Schulz E.
Tommasino ML.
Lemaire M.
Chem. Rev.
2000,
100:
2159
4b
McManus HA.
Guiry
PJ.
Chem.
Rev.
2004,
104:
4151
Synthesis of H-Bin-OR and their
application to peptide chemistry:
5a
Mazaleyrat J.-P.
Gaucher A.
Wakselman M.
Tchertanov L.
Guilhem J.
Tetrahedron
Lett.
1996,
37:
2971
5b
Mazaleyrat J.-P.
avrda J.
Wakselman M.
Tetrahedron:
Asymmetry
1997,
8:
619
5c
Mazaleyrat
J.-P.
Boutboul A.
Lebars Y.
Gaucher A.
Wakselman M.
Tetrahedron:
Asymmetry
1998,
9:
2701
5d
Mazaleyrat J.-P.
Wright K.
Gaucher A.
Wakselman M.
Oancea S.
Formaggio F.
Toniolo C.
Setnika V.
Kapitán J.
Keiderling TA.
Tetrahedron: Asymmetry
2003,
14:
1879
6a
Catalytic Asymmetric Synthesis
2nd
ed.:
Ojima I.
Wiley-VCH;
New
York:
2000.
6b
Comprehensive Asymmetric
Catalysis
Vol. 1-3:
Jacobsen EN.
Pfaltz A.
Yamamoto H.
Springer;
New
York:
1999.
7a
Dalko PI.
Moisan L.
Angew.
Chem. Int. Ed.
2004,
43:
5138
7b
Berkessel A.
Gröger H.
Asymmetric Organocatalysis
Wiley-VCH;
Weinheim:
2005.
7c
Enantioselective
Organocatalysis: Reactions and Experimental Procedures
Dalko PI.
Wiley-VCH;
Weinheim:
2007.
Reviews on the asymmetric allylic
alkylation reaction:
8a
Paquin J.-F.
Lautens M. In
Comprehensive
Asymmetric Catalysis
Suppl. 2:
Jacobsen EN.
Pfaltz A.
Yamamoto H.
Springer;
Berlin:
2004.
p.73-95 ; and references therein
8b
Pfaltz A.
Lautens M. In
Comprehensive Asymmetric
Catalysis
Vol. 2:
Jacobsen EN.
Pfaltz A.
Yamamoto H.
Springer;
New
York:
1999.
p.833-884 ; and
references therein
9 Palladium-catalyzed asymmetric allylic
alkylation using a spiro chiral ligand having a 1,1′-spirobiindane
backbone (SDP) has been reported, see ref.
[²d]
.
10 A previous report on asymmetric allylic
alkylation using pymox-Pd complex also shows moderate enantioselectivity (50% ee):
Nordström K., Macedo E., Moberg C.; J.
Org. Chem.; 1997, 62:
1604
Palladium-catalyzed asymmetric
allylic alkylations with fluorinated carbanion:
11a
Fukuzumi T.
Shibata N.
Sugiura M.
Yasui H.
Nakamura S.
Toru T.
Angew. Chem. Int. Ed.
2006,
45:
4973
11b
Jiang B.
Huang Z.-G.
Cheng K.-J.
Tetrahedron:
Asymmetry
2006,
17:
942
11c
Zhang F.
Song ZJ.
Tschaen D.
Volante RP.
Org. Lett.
2004,
6:
3775
11d
Komatsu Y.
Sakamoto T.
Kitazume T.
J.
Org. Chem.
1999,
64:
8369
12 For compounds 6a, 8c, see: Imamoto T.
Nishimura M.
Koide A.
Yoshida K.
J. Org. Chem.
2007,
72:
7413
13 For compounds 6b-d, 8b, see: Kinoshita N.
Kawabata T.
Tsubaki K.
Bando M.
Fuji K.
Tetrahedron
2006,
62:
1756
14 For compound 8a,
see: Braga AL.
Vargas F.
Sehnem
JA.
Braga RC.
J. Org. Chem.
2005,
70:
9021
15 For compound 8d,
see: Jiang B.
Huang Z.-G.
Cheng
K.-J.
Tetrahedron: Asymmetry
2006,
17:
942
16 Compound 1: ¹H
NMR (300 MHz, CDCl3): δ = 8.71 (m, 1 H),
8.08 (m, 1 H), 7.95 (m, 4 H), 7.77 (m, 1 H), 7.65 (d, J = 8.0 Hz,
1 H), 7.50 (d, J = 8.4
Hz, 1 H), 7.46-7.38 (m, 4 H), 7.33 (d, J = 8.8 Hz,
1 H), 7.27-7.20 (m, 2 H), 4.65 (d, J = 8.8
Hz, 1 H), 3.95 (d, J = 8.8
Hz, 1 H), 2.94 (d, J = 13.1 Hz,
1 H), 2.88 (d, J = 13.3
Hz, 1 H), 2.72 (d, J = 13.3
Hz, 1 H), 2.65 (d, J = 13.1
Hz, 1 H). ¹³C NMR (75 MHz, CDCl3): δ = 162.1,
149.8, 147.0, 136.7, 135.4, 134.7, 134.5, 133.7, 133.1, 133.0, 132.1,
131.9, 128.7, 128.5, 128.4, 128.4, 128.3, 127.5, 127.4, 127.2, 126.0,
125.7, 125.4, 125.1, 124.4, 82.5, 77.3, 44.4, 43.5. IR (neat): 3847,
3741, 3475, 3053, 2938, 1635, 1577, 1469, 1361, 1302, 1092, 968,
813, 751, 696, 615 cm-¹. Anal. Calcd
(%) for C30H22N2O: C, 84.48;
H, 5.20; N, 6.57. Found: C, 84.67; H, 5.15; N, 6.36. [α]D -72.4
(c 1.25, CHCl3).
17 Compound 4: ¹H
NMR (300 MHz, CDCl3): δ = 8.45 (m, 1 H),
8.23 (m, 2 H), 7.96-7.86 (m, 5 H), 7.55 (m, 1 H), 7.48-7.37
(m, 6 H), 7.29-7.23 (m, 2 H), 5.19 (dd, J = 5.2,
8.0 Hz, 1 H), 4.01 (dd, J = 8.0,
11.5 Hz, 1 H), 3.83 (dd, J = 5.2,
11.5 Hz, 1 H), 3.23 (d, J = 13.7
Hz, 1 H), 3.11 (d, J = 12.4
Hz, 1 H), 2.54 (d, J = 13.7
Hz, 1 H), 2.45 (d, J = 12.4
Hz, 1 H). ¹³C NMR (75 MHz,
CDCl3): δ = 165.0, 149.6, 148.2, 137.8, 135.4,
135.4, 134.8, 134.6, 134.4, 133.2, 133.2, 133.1, 132.0, 132.0, 128.6,
128.4, 128.4, 128.1, 128.1, 127.4, 126.6, 126.1, 126.0, 125.6, 125.4,
122.3, 70.2, 66.9, 41.0, 38.9. IR (neat): 3846, 3343, 3053, 2928,
1667, 1525, 1457, 1324, 1245, 1058, 817, 752, 697, 621, 436 cm-¹.
Anal. Calcd (%) for C30H24N2O2:
C, 80.06; H, 5.44; N, 6.30. Found: C, 81.34; H, 5.74; N, 6.03. [α]D -90.5
(c 1.0, CHCl3).
18 Compound 5e: ¹H
NMR (300 MHz, CDCl3): δ = 7.29-7.05 (m,
8 H), 6.60 (d, J = 15.3
Hz, 1 H), 6.41-6.28 (m, 2 H), 2.36 (s, 3 H), 2.32 (s, 3
H), 2.13 (s, 3 H). ¹³C NMR (75 MHz, CDCl3): δ = 170.2,
139.3, 138.4, 138.2, 136.2, 132.6, 129.0, 128.9, 128.63, 128.57,
127.8, 127.5, 124.2, 124.0, 76.4, 21.6, 21.49, 21.45. Anal. Calcd
(%) for C19H20O2: C, 81.40; H,
7.19; O, 11.41. Found: C, 81.06; H, 6.62.
19 Compound 6e: ¹H
NMR (300 MHz, CDCl3): δ = 7.26-7.00 (m,
8 H), 6.44 (d, J = 15.6
Hz, 1 H), 6.29 (dd, J = 15.6
Hz, 1 H), 4.21 (dd, J = 10.8,
8.4 Hz, 1 H), 3.94 (d, J = 10.8
Hz, 1 H), 3.70 (s, 3 H), 3.53 (s, 3 H), 2.33 (s, 3 H), 2.31 (s,
3 H). ¹³C NMR (75 MHz, CDCl3): δ = 168.4,
168.0, 140.3, 138.4, 138.1, 136.9, 131.9, 129.1, 128.7, 128.5, 128.0,
127.2, 124.8, 123.7, 57.7, 52.76, 52.74, 52.60, 52.57, 49.3. Anal. Calcd
(%) for C22H24O4: C, 74.98;
H, 6.86; O, 18.16. Found: C, 74.69; H, 6.86. [α]D +24.1
(c 0.63, CHCl3). The er was determined
by HPLC [hexane-2-PrOH (96:4), 0.5 mL/min] using
a CHIRALPAK AD column (0.46 cm × 25 cm): t
R (major isomer) = 23.0
min; t
R (minor isomer) = 26.5
min.