References and Notes
1a Grandisol
is a histrical example of pheromone having a cyclobutane moiety,
see: Petschen I.
Parrilla A.
Bosch
MP.
Amela C.
Botar AA.
Camps F.
Guerreo A.
Chem. Eur. J.
1999,
5:
3299
1b Solanoeclepin may be another
example having three-, four-, five-, six-, and seven-membered rings
including cyclobutane moiety of fully functional groups, see: Schenk H.
Driessen RAJ.
de Gelder R.
Goubitz K.
Nieboer H.
Brüggemann-Rotgans IEM.
Diepenhorst P.
Croat.
Chem. Acta
1999,
72:
593
For recent reviews on application
of cyclobutane, see:
2a
Bellus D.
Ernst B.
Angew. Chem., Int. Ed. Engl.
1988,
27:
797
2b
Lee-Ruff E.
Mladenova G.
Chem. Rev.
2003,
103:
1449
2c
Namyslo JC.
Kaufmann DE.
Chem.
Rev.
2003,
103:
1485
2d
Sadana AK.
Saini RK.
Billups
WE.
Chem. Rev.
2003,
103:
1539
3
Ciamician G.
Silber P.
Ber. Dtsch. Chem. Ges.
1908,
41:
1928
For recent reviews on [2+2] photocycloaddition,
see:
4a
Demuth M.
Mikhail G.
Synthesis
1989,
145
4b
Bach T.
Synthesis
1998,
683
5a
Roberts JD.
Sharts CM.
Org. React.
1962,
12:
1
5b
Crimmins MT.
Reinhold TL.
Org.
React.
1993,
44:
297
5c
Arseniyadis S.
Kyler KS.
Watt DS.
Org. React.
1984,
31:
1
6a
Vogel E.
Müller K.
Liebigs.
Ann. Chem.
1958,
615:
29
6b
Ghosez L.
Montaigne R.
Roussel A.
Vanlierde H.
Mollet P.
Tetrahedron
1971,
27:
615
7a
Wenkert E.
Bakuzis P.
Baumgarten RJ.
Leicht
CL.
Schenk HP.
J.
Am. Chem. Soc.
1971,
93:
3208
7b
Schumacher W.
Hanack M.
Synthesis
1981,
490
7c
Casadei MA.
Galli C.
Mandolini L.
J. Am. Chem. Soc.
1984,
106:
1051
7d
Mori K.
Fukamatsu K.
Liebigs Ann. Chem.
1992,
489
7e
Ihara M.
Ohnishi M.
Takano M.
Makita K.
Taniguchi N.
Fukumoto K.
J. Am. Chem. Soc.
1992,
114:
4408
7f
Kim D.
Kwak YS.
Shin KJ.
Tetrahedron
Lett.
1994,
35:
9211
7g
Tanino K.
Aoyagi K.
Kirihara Y.
Ito Y.
Miyashita M.
Tetrahedron
Lett.
2005,
46:
1169
8
Roskamp EJ.
Johnson CR.
J. Am. Chem. Soc.
1986,
108:
6062
9a
Ito H.
Motoki Y.
Taguchi T.
Hanzawa Y.
J. Am. Chem.
Soc.
1993,
115:
8835
9b
Hanzawa Y.
Ito H.
Taguchi T.
Synlett
1995,
299
9c
Paquette LA.
Cunière N.
Org.
Lett.
2002,
4:
1927
9d
Paquette LA.
J. Organomet. Chem.
2006,
691:
2083
9e
Aurrecoechea JM.
López B.
Arrate M.
J. Org. Chem.
2000,
65:
6493
10a
Menicagli R.
Malanga C.
Lardicci L.
Tinucci L.
Tetrahedron
Lett.
1980,
21:
4525
10b
Menicagli R.
Malanga C.
Lardicci L.
J.
Org. Chem.
1982,
47:
2288
10c
Meek SJ.
Pradaux F.
Demont EH.
Harrity JPA.
Org.
Lett.
2006,
8:
5597
11 For review of contraction of carbohydrate,
see: Redlich H.
Angew. Chem., Int.
Ed. Engl.
1994,
33:
1345
12
Stork G.
Cohen JF.
J. Am. Chem. Soc.
1974,
96:
5270
13a
Lallemand JY.
Onanga M.
Tetrahedron
Lett.
1975,
16:
585
13b
Petschen I.
Parrilla A.
Bosch MP.
Amela C.
Botar AA.
Camps F.
Guerrero A.
Chem.
Eur. J.
1999,
5:
3299
14
Krohn K.
Börner G.
J. Org. Chem.
1994,
59:
6063
15 Direct generation of a carbanion by
proton abstraction from α-sulfonyl group cannot be achieved
due to the fact that an epoxidic proton would be abstracted to convert
the epoxide into an enolate under these conditions.
16a
Isobe M.
Kitamura M.
Goto T.
J. Am. Chem. Soc.
1982,
104:
4997
16b
Kitamura M.
Isobe M.
Ichikawa Y.
Goto T.
J. Am. Chem. Soc.
1984,
106:
3252
16c
Isobe M.
Ichikawa Y.
Bai D.-L.
Masaki H.
Goto T.
Tetrahedron
1987,
43:
4767
16d
Ichikawa Y.
Tsuboi K.
Jiang Y.
Naganawa A.
Isobe M.
Tetrahedron
Lett.
1995,
36:
7101
16e
Tsuboi K.
Ichikawa Y.
Jiang Y.
Naganawa A.
Isobe M.
Tetrahedron
1997,
53:
5123
For reviews on the heteroconjugate
addition, see:
17a
Isobe M.
Nippon
Nogeikagaku Kaishi
1981,
55:
47
17b
Isobe M.
J.
Synth. Org. Chem. Jpn.
1983,
41:
51
17c
Isobe M. In Perspective in the Organic Chemistry of Sulfur
Zwanenburg B.
Klunder AJH.
Elsevier Science Publishers
B. V.;
Amsterdam:
1986.
p.209-229
17d
Isobe M.
J.
Synth. Org. Chem. Jpn.
1994,
52:
968
17e
Isobe M.
Kira K.
J. Synth. Org. Chem. Jpn.
2000,
58:
99
18
Tsuboi K.
Ichikawa Y.
Isobe M.
Synlett
1997,
713
19
Isobe M.
Kitamura M.
Goto T.
Tetrahedron
Lett.
1979,
20:
3465
20 The cyclobutane ring structure of 9 was confirmed by X-ray crystallographic
analysis (see Supporting Information), and other structures were
confirmed through NMR spectroscopy.
21
General Procudure
for the Synthesis of Cyclobutane by Heteroconjugate Addition
Trimethylsilylacetylene
(5 equiv) was dissolved in THF and cooled to -78 ˚C
under argon atmosphere. To this cold solution was added a solution
of methyllithium-lithium bromide complex (4 equiv) dropwise
with stirring. This stirring was continued at -78 ˚C
for 30 min, and then a solution of vinylsulfone-epoxide (1 equiv)
in THF was added to this mixture. After stirring for further 20
min, the reaction mixture was allowed to warm to -44 ˚C,
and the temperature was kept at -44 ˚C for 40
min, then at -23 ˚C for 1 h. The reaction mixture
was poured into an ice-cooled sat. aq NH4Cl. The aqueous
layer was separated and extracted with Et2O. The extracts
were combined, washed with H2O and brine, and then dried
over Na2SO4. The solution was concentrated
in vacuo, and the residue was purified by flash column chromatography
to give the corresponding cyclobutane.
22 Cyclobutane 9:
IR (KBr): νmax = 3448, 2957, 2858,
1448, 1284, 1252, 1134, 1117, 842 cm-¹. ¹H
NMR (600 MHz, CDCl3): δ = -0.14
(3 H, s), 0.08 (6 H, s), 0.17 (9 H, s), 0.47 (3 H, s), 0.94 (9 H,
s), 3.41 (1 H, br d, J = 8.6
Hz), 3.51 (1 H, dt, J = 11.5,
8.4 Hz), 3.63 (1 H, t, J = 9.5
Hz), 3.79 (1 H, dd, J = 9.7,
5.4 Hz), 4.27 (1 H, d, J = 8.1
Hz), 4.87 (1 H, br dt, J = 9.3,
4.8 Hz), 4.94 (1 H, d, J = 11.5
Hz), 4.98 (1 H, d, J = 4.1
Hz), 7.26 (2 H, t, J = 7.5
Hz), 7.36 (1 H, t, J = 7.5 Hz),
7.49 (2 H, t, J = 7.5
Hz), 7.61-7.68 (3 H, m), 7.91 (2 H, d, J = 7.5
Hz). ¹³C NMR (150 MHz, CDCl3): δ = -5.4, -5.4, -3.6, -2.6, -0.3,
18.3, 25.9, 45.8, 47.6, 57.4, 65.0, 70.9, 71.5, 91.6, 104.0, 127.8,
128.8, 129.0, 130.1, 134.0, 134.6, 135.8, 140.5. Anal. Calcd for
C31H48O5SSi3: C, 60.34;
H, 7.84. Found: C, 60.34; H, 7.98.
Cyclobutane 10: IR (KBr): νmax = 3493,
2956, 2172, 1428, 1247, 1147, 1023, 967, 848 cm-¹. ¹H
NMR (400 MHz, C6D6, 318 K): δ = 0.09
(6 H, s), 0.10 (9 H, s), 0.54 (3 H, s), 0.56 (3 H, s), 1.00 (9 H,
s), 2.09 (1 H, d, J = 5.4
Hz), 3.08 (1 H, ddd, J = 9.4,
7.4, 2.3 Hz), 3.30 (1 H, dd, J = 9.1,
7.2 Hz), 3.37 (1 H, t, J = 9.1
Hz), 3.46 (1 H, dd, J = 10.5,
5.0 Hz), 3.56 (1 H, dd, J = 10.5,
5.0 Hz), 4.10 (1 H, td, J = 5.0,
2.3 Hz), 4.37 (1 H, td, J = 7.2,
5.5 Hz), 7.06-7.20 (3 H, m), 7.30-7.40 (3 H, m),
7.71-7.76 (2 H, m), 7.87-7.92 (2 H, m). ¹³C
NMR (100 MHz, C6D6): δ = -5.4, -5.4, -1.7, -0.7, -0.1,
18.6, 26.1, 37.2, 48.2, 56.1, 66.5, 68.4, 71.6, 87.7, 103.8, 128.7,
128.8, 129.1, 129.9, 133.3, 133.9, 138.4, 139.6. Anal. Calcd for C31H48O5SSi3:
C, 60.34; H, 7.84. Found: C, 60.34; H, 7.96.
23
Marshall JA.
Trometer JD.
Cleary DG.
Tetrahedron
1989,
45:
391
24
Kolb HC.
Sharpless KB.
Tetrahedron
1992,
48:
10515
For hydrosilylation with a catalytic
amount of Co complex, see:
25a
Isobe M.
Nishizawa R.
Nishikawa T.
Yoza K.
Tetrahedron Lett.
1999,
40:
6972
25b
Liu T.-Z.
Kirschbaum B.
Isobe M.
Synlett
2000,
587
25c
Liu T.-Z.
Isobe M.
Tetrahedron
2000,
56:
5391
25d
Baba T.
Isobe M.
Synlett
2003,
547
25e
Baba T.
Huang G.
Isobe M.
Tetrahedron
2003,
59:
6851
26
Isobe M.
Kitamura M.
Mio S.
Goto T.
Tetrahedron Lett.
1982,
23:
221
27 Cyclobutane 20: [α]D
²7 -14.5
(c 1.15, CHCl3). IR (KBr): νmax = 3525,
3031, 2172, 1305, 1148 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = -0.02
(9 H, s), 0.40 (3 H, s), 0.41 (3 H, s), 2.61 (1 H, m), 2.91 (1 H,
td, J = 9.0,
3.0 Hz), 2.95 (1 H, t, J = 9.0 Hz),
3.38 (2 H, d, J = 6.0
Hz), 3.48 (1 H, t, J = 9.0
Hz), 3.57 (1 H, dd, J = 11.5,
6.5 Hz), 3.64 (1 H, dd, J = 11.5,
6.5 Hz), 3.98 (1 H, td, J = 6.0,
3.0 Hz), 4.38 (1 H, d, J = 11.5
Hz), 4.44 (1 H, d, J = 11.5
Hz), 7.25-7.76 (15 H, m). ¹³C
NMR (100 MHz, CDCl3): δ = -1.4, -1.1, -0.1,
27.1, 39.6, 40.8, 60.5, 64.1, 70.5, 71.9, 73.4, 87.2, 104.0, 127.9,
127.9, 127.9, 128.4, 128.4, 129.1, 129.7, 133.5, 133.6, 137.4, 137.7, 138.3.
Anal. Calcd for C33H42O5SSi2:
C, 65.32; H, 6.98. Found: C, 65.32; H, 7.04.
28 Cyclobutane 24: [α]D
²² -34.2
(c 0.56, CHCl3). IR (KBr):
νmax = 3358,
3066, 3030, 1287, 1136 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 0.03 (9 H,
s), 0.55-0.66 (2 H, m), 0.72-0.84 (4 H, m), 0.89
(9 H, t, J = 7.5
Hz), 2.77 (1 H, tdd, J = 10.5,
7.5, 2.5 Hz), 3.26 (1 H, ddd, J = 10.5,
6.0, 1.0 Hz), 3.69 (1 H, dd, J = 12.5,
2.5 Hz), 3.73 (1 H, dd, J = 10.0,
5.0 Hz), 3.83 (1 H, dd, J = 10.0,
5.0 Hz), 3.86 (1 H, dd, J = 12.5, 7.5
Hz), 4.20 (1 H, dd, J = 10.5,
1.0 Hz), 4.56 (1 H, d, J = 11.5
Hz), 4.61 (1 H, d, J = 11.5
Hz), 4.98 (1 H, td, J = 6.0,
3.0 Hz), 7.28-7.39 (5 H, m), 7.48-7.54 (2 H, m), 7.61-7.67
(1 H, m), 7.92-7.96 (2 H, m). ¹³C
NMR (100 MHz, CDCl3): δ = -0.4,
3.7, 8.2, 32.5, 43.2, 46.6, 60.7, 63.1, 67.6, 72.5, 73.2, 90.2,
104.8, 127.8, 127.9, 128.4, 128.9, 129.1, 133.8, 137.8, 140.9. Anal.
Calcd for C31H46O5SSi2:
C, 63.44; H, 7.90. Found: C, 63.44; H, 7.97.