RSS-Feed abonnieren
DOI: 10.1055/s-0028-1088108
Novel Stereocontrolled Synthesis of Highly Functionalized Cyclobutanes by Epoxide Opening through a Carbanion Intermediate in Heteroconjugate Addition
Publikationsverlauf
Publikationsdatum:
26. März 2009 (online)
Abstract
We have demonstrated a new cyclobutane ring formation from the trans-1,2-disubstituted epoxides through intramolecular carbanion opening process. In this reaction, the nucleophilic carbanion is generated not via α-proton abstraction but via heteroconjugate addition. These studies indicate that the different configuration of each epoxide (syn and anti) do not affect its reactivity and the reaction velocity in the cyclization step, providing multifunctionalized cyclobutanes in a regio- and stereospecific manner.
Key words
heteroconjugate addition - sulfonyl carbanion - epoxides - cyclization - cyclobutanes
- Supporting Information for this article is available online:
- Supporting Information
-
1a Grandisol
is a histrical example of pheromone having a cyclobutane moiety,
see:
Petschen I.Parrilla A.Bosch MP.Amela C.Botar AA.Camps F.Guerreo A. Chem. Eur. J. 1999, 5: 3299 -
1b Solanoeclepin may be another
example having three-, four-, five-, six-, and seven-membered rings
including cyclobutane moiety of fully functional groups, see:
Schenk H.Driessen RAJ.de Gelder R.Goubitz K.Nieboer H.Brüggemann-Rotgans IEM.Diepenhorst P. Croat. Chem. Acta 1999, 72: 593 - For recent reviews on application of cyclobutane, see:
-
2a
Bellus D.Ernst B. Angew. Chem., Int. Ed. Engl. 1988, 27: 797 -
2b
Lee-Ruff E.Mladenova G. Chem. Rev. 2003, 103: 1449 -
2c
Namyslo JC.Kaufmann DE. Chem. Rev. 2003, 103: 1485 -
2d
Sadana AK.Saini RK.Billups WE. Chem. Rev. 2003, 103: 1539 - 3
Ciamician G.Silber P. Ber. Dtsch. Chem. Ges. 1908, 41: 1928 - For recent reviews on [2+2] photocycloaddition, see:
-
4a
Demuth M.Mikhail G. Synthesis 1989, 145 -
4b
Bach T. Synthesis 1998, 683 -
5a
Roberts JD.Sharts CM. Org. React. 1962, 12: 1 -
5b
Crimmins MT.Reinhold TL. Org. React. 1993, 44: 297 -
5c
Arseniyadis S.Kyler KS.Watt DS. Org. React. 1984, 31: 1 -
6a
Vogel E.Müller K. Liebigs. Ann. Chem. 1958, 615: 29 -
6b
Ghosez L.Montaigne R.Roussel A.Vanlierde H.Mollet P. Tetrahedron 1971, 27: 615 -
7a
Wenkert E.Bakuzis P.Baumgarten RJ.Leicht CL.Schenk HP. J. Am. Chem. Soc. 1971, 93: 3208 -
7b
Schumacher W.Hanack M. Synthesis 1981, 490 -
7c
Casadei MA.Galli C.Mandolini L. J. Am. Chem. Soc. 1984, 106: 1051 -
7d
Mori K.Fukamatsu K. Liebigs Ann. Chem. 1992, 489 -
7e
Ihara M.Ohnishi M.Takano M.Makita K.Taniguchi N.Fukumoto K. J. Am. Chem. Soc. 1992, 114: 4408 -
7f
Kim D.Kwak YS.Shin KJ. Tetrahedron Lett. 1994, 35: 9211 -
7g
Tanino K.Aoyagi K.Kirihara Y.Ito Y.Miyashita M. Tetrahedron Lett. 2005, 46: 1169 - 8
Roskamp EJ.Johnson CR. J. Am. Chem. Soc. 1986, 108: 6062 -
9a
Ito H.Motoki Y.Taguchi T.Hanzawa Y. J. Am. Chem. Soc. 1993, 115: 8835 -
9b
Hanzawa Y.Ito H.Taguchi T. Synlett 1995, 299 -
9c
Paquette LA.Cunière N. Org. Lett. 2002, 4: 1927 -
9d
Paquette LA. J. Organomet. Chem. 2006, 691: 2083 -
9e
Aurrecoechea JM.López B.Arrate M. J. Org. Chem. 2000, 65: 6493 -
10a
Menicagli R.Malanga C.Lardicci L.Tinucci L. Tetrahedron Lett. 1980, 21: 4525 -
10b
Menicagli R.Malanga C.Lardicci L. J. Org. Chem. 1982, 47: 2288 -
10c
Meek SJ.Pradaux F.Demont EH.Harrity JPA. Org. Lett. 2006, 8: 5597 - 11 For review of contraction of carbohydrate,
see:
Redlich H. Angew. Chem., Int. Ed. Engl. 1994, 33: 1345 - 12
Stork G.Cohen JF. J. Am. Chem. Soc. 1974, 96: 5270 -
13a
Lallemand JY.Onanga M. Tetrahedron Lett. 1975, 16: 585 -
13b
Petschen I.Parrilla A.Bosch MP.Amela C.Botar AA.Camps F.Guerrero A. Chem. Eur. J. 1999, 5: 3299 - 14
Krohn K.Börner G. J. Org. Chem. 1994, 59: 6063 -
16a
Isobe M.Kitamura M.Goto T. J. Am. Chem. Soc. 1982, 104: 4997 -
16b
Kitamura M.Isobe M.Ichikawa Y.Goto T. J. Am. Chem. Soc. 1984, 106: 3252 -
16c
Isobe M.Ichikawa Y.Bai D.-L.Masaki H.Goto T. Tetrahedron 1987, 43: 4767 -
16d
Ichikawa Y.Tsuboi K.Jiang Y.Naganawa A.Isobe M. Tetrahedron Lett. 1995, 36: 7101 -
16e
Tsuboi K.Ichikawa Y.Jiang Y.Naganawa A.Isobe M. Tetrahedron 1997, 53: 5123 - For reviews on the heteroconjugate addition, see:
-
17a
Isobe M. Nippon Nogeikagaku Kaishi 1981, 55: 47 -
17b
Isobe M. J. Synth. Org. Chem. Jpn. 1983, 41: 51 -
17c
Isobe M. In Perspective in the Organic Chemistry of SulfurZwanenburg B.Klunder AJH. Elsevier Science Publishers B. V.; Amsterdam: 1986. p.209-229 -
17d
Isobe M. J. Synth. Org. Chem. Jpn. 1994, 52: 968 -
17e
Isobe M.Kira K. J. Synth. Org. Chem. Jpn. 2000, 58: 99 - 18
Tsuboi K.Ichikawa Y.Isobe M. Synlett 1997, 713 - 19
Isobe M.Kitamura M.Goto T. Tetrahedron Lett. 1979, 20: 3465 - 23
Marshall JA.Trometer JD.Cleary DG. Tetrahedron 1989, 45: 391 - 24
Kolb HC.Sharpless KB. Tetrahedron 1992, 48: 10515 - For hydrosilylation with a catalytic amount of Co complex, see:
-
25a
Isobe M.Nishizawa R.Nishikawa T.Yoza K. Tetrahedron Lett. 1999, 40: 6972 -
25b
Liu T.-Z.Kirschbaum B.Isobe M. Synlett 2000, 587 -
25c
Liu T.-Z.Isobe M. Tetrahedron 2000, 56: 5391 -
25d
Baba T.Isobe M. Synlett 2003, 547 -
25e
Baba T.Huang G.Isobe M. Tetrahedron 2003, 59: 6851 - 26
Isobe M.Kitamura M.Mio S.Goto T. Tetrahedron Lett. 1982, 23: 221
References and Notes
Direct generation of a carbanion by proton abstraction from α-sulfonyl group cannot be achieved due to the fact that an epoxidic proton would be abstracted to convert the epoxide into an enolate under these conditions.
20The cyclobutane ring structure of 9 was confirmed by X-ray crystallographic analysis (see Supporting Information), and other structures were confirmed through NMR spectroscopy.
21General Procudure for the Synthesis of Cyclobutane by Heteroconjugate Addition Trimethylsilylacetylene (5 equiv) was dissolved in THF and cooled to -78 ˚C under argon atmosphere. To this cold solution was added a solution of methyllithium-lithium bromide complex (4 equiv) dropwise with stirring. This stirring was continued at -78 ˚C for 30 min, and then a solution of vinylsulfone-epoxide (1 equiv) in THF was added to this mixture. After stirring for further 20 min, the reaction mixture was allowed to warm to -44 ˚C, and the temperature was kept at -44 ˚C for 40 min, then at -23 ˚C for 1 h. The reaction mixture was poured into an ice-cooled sat. aq NH4Cl. The aqueous layer was separated and extracted with Et2O. The extracts were combined, washed with H2O and brine, and then dried over Na2SO4. The solution was concentrated in vacuo, and the residue was purified by flash column chromatography to give the corresponding cyclobutane.
22Cyclobutane 9:
IR (KBr): νmax = 3448, 2957, 2858,
1448, 1284, 1252, 1134, 1117, 842 cm-¹. ¹H
NMR (600 MHz, CDCl3): δ = -0.14
(3 H, s), 0.08 (6 H, s), 0.17 (9 H, s), 0.47 (3 H, s), 0.94 (9 H,
s), 3.41 (1 H, br d, J = 8.6
Hz), 3.51 (1 H, dt, J = 11.5,
8.4 Hz), 3.63 (1 H, t, J = 9.5
Hz), 3.79 (1 H, dd, J = 9.7,
5.4 Hz), 4.27 (1 H, d, J = 8.1
Hz), 4.87 (1 H, br dt, J = 9.3,
4.8 Hz), 4.94 (1 H, d, J = 11.5
Hz), 4.98 (1 H, d, J = 4.1
Hz), 7.26 (2 H, t, J = 7.5
Hz), 7.36 (1 H, t, J = 7.5 Hz),
7.49 (2 H, t, J = 7.5
Hz), 7.61-7.68 (3 H, m), 7.91 (2 H, d, J = 7.5
Hz). ¹³C NMR (150 MHz, CDCl3): δ = -5.4, -5.4, -3.6, -2.6, -0.3,
18.3, 25.9, 45.8, 47.6, 57.4, 65.0, 70.9, 71.5, 91.6, 104.0, 127.8,
128.8, 129.0, 130.1, 134.0, 134.6, 135.8, 140.5. Anal. Calcd for
C31H48O5SSi3: C, 60.34;
H, 7.84. Found: C, 60.34; H, 7.98.
Cyclobutane 10: IR (KBr): νmax = 3493,
2956, 2172, 1428, 1247, 1147, 1023, 967, 848 cm-¹. ¹H
NMR (400 MHz, C6D6, 318 K): δ = 0.09
(6 H, s), 0.10 (9 H, s), 0.54 (3 H, s), 0.56 (3 H, s), 1.00 (9 H,
s), 2.09 (1 H, d, J = 5.4
Hz), 3.08 (1 H, ddd, J = 9.4,
7.4, 2.3 Hz), 3.30 (1 H, dd, J = 9.1,
7.2 Hz), 3.37 (1 H, t, J = 9.1
Hz), 3.46 (1 H, dd, J = 10.5,
5.0 Hz), 3.56 (1 H, dd, J = 10.5,
5.0 Hz), 4.10 (1 H, td, J = 5.0,
2.3 Hz), 4.37 (1 H, td, J = 7.2,
5.5 Hz), 7.06-7.20 (3 H, m), 7.30-7.40 (3 H, m),
7.71-7.76 (2 H, m), 7.87-7.92 (2 H, m). ¹³C
NMR (100 MHz, C6D6): δ = -5.4, -5.4, -1.7, -0.7, -0.1,
18.6, 26.1, 37.2, 48.2, 56.1, 66.5, 68.4, 71.6, 87.7, 103.8, 128.7,
128.8, 129.1, 129.9, 133.3, 133.9, 138.4, 139.6. Anal. Calcd for C31H48O5SSi3:
C, 60.34; H, 7.84. Found: C, 60.34; H, 7.96.
Cyclobutane 20: [α]D ²7 -14.5 (c 1.15, CHCl3). IR (KBr): νmax = 3525, 3031, 2172, 1305, 1148 cm-¹. ¹H NMR (400 MHz, CDCl3): δ = -0.02 (9 H, s), 0.40 (3 H, s), 0.41 (3 H, s), 2.61 (1 H, m), 2.91 (1 H, td, J = 9.0, 3.0 Hz), 2.95 (1 H, t, J = 9.0 Hz), 3.38 (2 H, d, J = 6.0 Hz), 3.48 (1 H, t, J = 9.0 Hz), 3.57 (1 H, dd, J = 11.5, 6.5 Hz), 3.64 (1 H, dd, J = 11.5, 6.5 Hz), 3.98 (1 H, td, J = 6.0, 3.0 Hz), 4.38 (1 H, d, J = 11.5 Hz), 4.44 (1 H, d, J = 11.5 Hz), 7.25-7.76 (15 H, m). ¹³C NMR (100 MHz, CDCl3): δ = -1.4, -1.1, -0.1, 27.1, 39.6, 40.8, 60.5, 64.1, 70.5, 71.9, 73.4, 87.2, 104.0, 127.9, 127.9, 127.9, 128.4, 128.4, 129.1, 129.7, 133.5, 133.6, 137.4, 137.7, 138.3. Anal. Calcd for C33H42O5SSi2: C, 65.32; H, 6.98. Found: C, 65.32; H, 7.04.
28Cyclobutane 24: [α]D
²² -34.2
(c 0.56, CHCl3). IR (KBr):
νmax = 3358,
3066, 3030, 1287, 1136 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 0.03 (9 H,
s), 0.55-0.66 (2 H, m), 0.72-0.84 (4 H, m), 0.89
(9 H, t, J = 7.5
Hz), 2.77 (1 H, tdd, J = 10.5,
7.5, 2.5 Hz), 3.26 (1 H, ddd, J = 10.5,
6.0, 1.0 Hz), 3.69 (1 H, dd, J = 12.5,
2.5 Hz), 3.73 (1 H, dd, J = 10.0,
5.0 Hz), 3.83 (1 H, dd, J = 10.0,
5.0 Hz), 3.86 (1 H, dd, J = 12.5, 7.5
Hz), 4.20 (1 H, dd, J = 10.5,
1.0 Hz), 4.56 (1 H, d, J = 11.5
Hz), 4.61 (1 H, d, J = 11.5
Hz), 4.98 (1 H, td, J = 6.0,
3.0 Hz), 7.28-7.39 (5 H, m), 7.48-7.54 (2 H, m), 7.61-7.67
(1 H, m), 7.92-7.96 (2 H, m). ¹³C
NMR (100 MHz, CDCl3): δ = -0.4,
3.7, 8.2, 32.5, 43.2, 46.6, 60.7, 63.1, 67.6, 72.5, 73.2, 90.2,
104.8, 127.8, 127.9, 128.4, 128.9, 129.1, 133.8, 137.8, 140.9. Anal.
Calcd for C31H46O5SSi2:
C, 63.44; H, 7.90. Found: C, 63.44; H, 7.97.