References and Notes
1a
Barrett GC.
Chemistry
and Biochemistry of the Amino Acids
Chapman
and Hall;
London:
1985.
1b
Jones JH.
Amino Acids and Peptides
RCS;
London:
1992.
For recent reviews, see:
2a
Najera C.
Sansano JM.
Chem. Rev.
2007,
107:
4584
2b
Maruoka K.
Ooi T.
Chem. Rev.
2003,
103:
3013
2c
O’Donnell MJ.
Acc. Chem. Res.
2004,
37:
506
2d
Lygo B.
Andrews BI.
Acc. Chem. Res.
2004,
37:
518
2e
O’Donnell MJ.
Aldrichimica Acta
2001,
34:
3
3a
O’Donnell MJ.
Boniece JM.
Earp SE.
Tetrahedron Lett.
1978,
2641
3b
O’Donnell MJ.
Eckrich TM.
Tetrahedron
Lett.
1978,
4625
4a
Ryoda A.
Yajima N.
Haga T.
Kumamoto T.
Nakanishi W.
Kawahata M.
Yamaguchi K.
Ishikawa T.
J. Org.
Chem.
2008,
73:
133
4b
Saito S.
Tsubogo T.
Kobayashi S.
J.
Am. Chem. Soc.
2007,
129:
5364
4c
Reddy VJ.
Roforth MM.
Tan C.
Reddy MVR.
Inorg.
Chem.
2007,
46:
381
4d
Arai S.
Takahashi F.
Tsuji R.
Nishida A.
Heterocycles
2006,
67:
495
4e
Chinchilla R.
Mazón P.
Nájera C.
Ortega FJ.
Yus M.
ARKIVOC
2005,
(νi):
222
4f
Rueffer ME.
Fort LK.
MacFarland DK.
Tetrahedron: Asymmetry
2004,
15:
3297
4g
Ohshima T.
Shibuguchi T.
Fukuta Y.
Shibasaki M.
Tetrahedron
2004,
60:
7743
4h
Siebum
AHG.
Tsang RKF.
van der Steen R.
Raap J.
Lugtenburg J.
Eur.
J. Org. Chem.
2004,
4391
4i
Akiyama T.
Hara M.
Fuchibe K.
Sakamoto S.
Yamaguchi K.
Chem.
Commun.
2003,
1734
4j
Corey
EJ.
Noe MC.
Org.
Synth.
2003,
80:
34
4k
Shibuguchi T.
Fukuta Y.
Akachi Y.
Sekine A.
Ohshima T.
Shibasaki M.
Tetrahedron Lett.
2002,
43:
9539
4l
Ishikawa T.
Araki Y.
Kumamoto T.
Seki H.
Fukuda K.
Isobe T.
Chem. Commun.
2001,
245
4m
O’Donnell MJ.
Delgado F.
Dominguez E.
de Blas J.
Scott WL.
Tetrahedron: Asymmetry
2001,
12:
821
4n
Tzalis D.
Knochel P.
Tetrahedron Lett.
1999,
40:
3685
4o
Corey
EJ.
Noe MC.
Xu F.
Tetrahedron Lett.
1998,
39:
5347
4p
Lopez A.
Moreno-Mañas M.
Pleixats R.
Roglans A.
Ezquerra J.
Pedregal C.
Tetrahedron
1996,
52:
8365
4q
Moreno-Mañas M.
Pleixats R.
Roglans A.
Liebigs Ann.
1995,
1807
5a
Arai S.
Tokumaru K.
Aoyama T.
Chem. Pharm. Bull.
2004,
52:
646
5b
Zhang F.-Y.
Corey EJ.
Org. Lett.
2000,
2:
1097
6a
Shibuguchi T.
Mihara H.
Kuramochi A.
Sakuraba S.
Ohshima T.
Shibasaki M.
Angew.
Chem. Int. Ed.
2006,
45:
4635
6b
Wannaporn D.
Ishikawa T.
Mol. Diversity
2005,
9:
321
6c
Lygo B.
Allbutt B.
Kirton EHM.
Tetrahedron Lett.
2005,
46:
4461
6d
Tullis JS.
Laufersweiler MJ.
VanRens JC.
Natchus MG.
Bookland RG.
Almstead NG.
Pikul S.
De B.
Hsieh LC.
Janusz MJ.
Branch TM.
Peng SX.
Jin YY.
Hudlicky T.
Oppong K.
Bioorg.
Med. Chem. Lett.
2001,
11:
1975
The benzaldehyde derived glycine
imines have been widely used as precursor of 1,3-dipole in [3+2] reactions.
For recent examples, see:
7a
Yan X.-X.
Peng Q.
Zhang Y.
Zhang K.
Hong W.
Hou X.-L.
Wu Y.-D.
Angew. Chem. Int. Ed.
2006,
45:
1979
7b
Xue M.-X.
Zhang X.-M.
Gong L.-Z.
Synlett
2008,
691
For reviews, see:
8a
Barrett AGM.
Graboski GG.
Chem.
Rev.
1986,
86:
751
8b
Berner OM.
Tedeschi L.
Enders D.
Eur. J. Org. Chem.
2002,
1877
9
Rowley M.
Leeson PD.
Williams BJ.
Moore KW.
Baker R.
Tetrahedron
1992,
48:
3557
10
Zindel J.
de Meijere A.
Synthesis
1994,
190
11a
Ayerbe M.
Arrieta A.
Cossío FP.
Linden A.
J. Org. Chem.
1998,
63:
1795
11b
Vivanco S.
Lecea B.
Arrieta A.
Prieto P.
Morao I.
Linden A.
Cossío FP.
J.
Am. Chem. Soc.
2000,
122:
6078
12
Cashin AL.
Torrice MM.
McMenimen KA.
Lester HA.
Dougherty DA.
Biochemistry
2007,
46:
630
13a
Lu S.-F.
Du D.-M.
Xu J.
Zhang S.-W.
J. Am.
Chem. Soc.
2006,
128:
7418
13b
Lu S.-F.
Du D.-M.
Xu J.
Org. Lett.
2006,
8:
2115
13c
Liu H.
Xu J.
Du D.-M.
Org.
Lett.
2007,
9:
4725
13d
Liu H.
Lu S.-F.
Xu J.
Du D.-M.
Chem. Asian J.
2008,
3:
1111
13e
Zhou W.-M.
Liu H.
Du D.-M.
Org.
Lett.
2008,
10:
2817
14
Ono N.
The Nitro Group in Organic Synthesis
Wiley-VCH;
New
York:
2001.
15
General Procedure
for Michael Addition of Glycine Imines to Aromatic Nitroalkenes
To
a stirred solution of nitroalkene (1.2 mmol), LiOTf (16 mg, 0.1
mmol), and ethyl diphenylmethyleneiminoacetate (267 mg, 1 mmol)
or tert-butyl diphenylmethyleneimino-acetate
(295 mg, 1 mmol) in dry THF (1 mL) was added DBU (15 mg, 0.1 mmol)
in dry THF (1 mL). The mixture was stirred at r.t. for 24 h. After
being quenched by H2O, the mixture was extracted by CH2Cl2.
The organic phase was separated and dried with Na2SO4.
The diastereoselectivity was determined by NMR analysis of curde
product. The sample for analysis was purified on column chromatography (SiO2,
200-300 mesh) using PE-EtOAc (20:1) as eluent
and recrystallized from Et2O and PE.
syn
-Ethyl 2-Diphenylmethyleneimino-4-nitro-3-phenyl-butanoate (5a)
According to the general
procedure, a white solid was obtained; mp 84-85 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 1.20
(t, J = 7.2
Hz, 3 H), 4.11-4.16 (m, 2 H), 4.27-4.38 (m, 2
H), 5.14-5.18 (m, 2 H), 6.60-6.62 (d, J = 6.9 Hz,
2 H), 7.14-7.48 (m, 1 1H), 7.64 (d, J = 6.9
Hz, 2 H). IR: 1735, 1551, 1446, 1368, 1316, 1290, 1190, 1024, 695
cm-¹. MS (70 eV, EI): m/z (%) = 416
(3) [M+], 343 (10), 296 (23),
267 (21), 266 (100), 193 (47), 165 (50). Anal. Calcd (%)
for C25H24N2O4: C, 72.10;
H, 5.81; N, 6.73. Found: C, 71.74; H, 5.83; N, 6.55.2.
syn
-Ethyl 2-Diphenylmethyleneimino-3-(4-methylphenyl)-4-nitrobutanoate (5b)
According to the general
procedure, a white solid was obtained; mp 102-103 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 1.19
(t, J = 6.9
Hz, 3 H), 2.29 (s, 3 H), 4.10-4.15 (m, 2 H), 4.27-4.32
(m, 2 H), 5.10-5.12 (m, 2 H), 6.65 (d, J = 6.0 Hz,
2 H), 7.04 (s, 4 H), 7.27-7.45 (m, 6 H), 7.65 (d, J = 7.5 Hz,
2 H). ¹³C NMR (75 MHz, CDCl3): δ = 14.0,
21.0, 46.2, 61.5, 68.7, 76.3, 127.3, 128.0, 128.2, 128.3, 128.6,
128.9, 129.3, 130.9, 134.0, 135.4, 137.4, 138.7, 169.9, 172.6. IR: 1736,
1732, 1619, 1552, 1516, 1446, 1379, 1317, 1288, 1182, 1026, 695
cm-¹. MS (70 eV, EI): m/z (%) = 430
(4) [M+], 413 (3), 357 (7),
310 (17), 267 (27), 266 (100), 238 (22), 193 (69), 165 (61). Anal.
Calcd (%) for C26H26N2O4:
C, 72.54; H, 6.09; N, 6.51. Found: C, 72.36; H, 6.22; N, 6.35.