Subscribe to RSS
DOI: 10.1055/s-0028-1088210
Mild Michael Addition of Glycine Imines to Aromatic Nitroalkenes Catalyzed by DBU with LiOTf as an Additive
Publication History
Publication Date:
16 March 2009 (online)
Abstract
A mild Michael addition of glycine imines to aromaticnitroalkenes catalyzed by 10 mol% DBU with LiOTf as an additive was developed. In most cases, the products could be obtained in good yields (up to 96%) with moderate to good diastereoselectivities (up to 10:1). The selectivity for syn adduct can be reversed to anti when the R group of glycine imines was changed from methyl or ethyl to tert-butyl.
Key words
Michael addition - nitroalkene - catalysis - amino acids - DBU
- Supporting Information for this article is available online:
- Supporting Information
-
1a
Barrett GC. Chemistry and Biochemistry of the Amino Acids Chapman and Hall; London: 1985. -
1b
Jones JH. Amino Acids and Peptides RCS; London: 1992. - For recent reviews, see:
-
2a
Najera C.Sansano JM. Chem. Rev. 2007, 107: 4584 -
2b
Maruoka K.Ooi T. Chem. Rev. 2003, 103: 3013 -
2c
O’Donnell MJ. Acc. Chem. Res. 2004, 37: 506 -
2d
Lygo B.Andrews BI. Acc. Chem. Res. 2004, 37: 518 -
2e
O’Donnell MJ. Aldrichimica Acta 2001, 34: 3 -
3a
O’Donnell MJ.Boniece JM.Earp SE. Tetrahedron Lett. 1978, 2641 -
3b
O’Donnell MJ.Eckrich TM. Tetrahedron Lett. 1978, 4625 -
4a
Ryoda A.Yajima N.Haga T.Kumamoto T.Nakanishi W.Kawahata M.Yamaguchi K.Ishikawa T. J. Org. Chem. 2008, 73: 133 -
4b
Saito S.Tsubogo T.Kobayashi S. J. Am. Chem. Soc. 2007, 129: 5364 -
4c
Reddy VJ.Roforth MM.Tan C.Reddy MVR. Inorg. Chem. 2007, 46: 381 -
4d
Arai S.Takahashi F.Tsuji R.Nishida A. Heterocycles 2006, 67: 495 -
4e
Chinchilla R.Mazón P.Nájera C.Ortega FJ.Yus M. ARKIVOC 2005, (νi): 222 -
4f
Rueffer ME.Fort LK.MacFarland DK. Tetrahedron: Asymmetry 2004, 15: 3297 -
4g
Ohshima T.Shibuguchi T.Fukuta Y.Shibasaki M. Tetrahedron 2004, 60: 7743 -
4h
Siebum AHG.Tsang RKF.van der Steen R.Raap J.Lugtenburg J. Eur. J. Org. Chem. 2004, 4391 -
4i
Akiyama T.Hara M.Fuchibe K.Sakamoto S.Yamaguchi K. Chem. Commun. 2003, 1734 -
4j
Corey EJ.Noe MC. Org. Synth. 2003, 80: 34 -
4k
Shibuguchi T.Fukuta Y.Akachi Y.Sekine A.Ohshima T.Shibasaki M. Tetrahedron Lett. 2002, 43: 9539 -
4l
Ishikawa T.Araki Y.Kumamoto T.Seki H.Fukuda K.Isobe T. Chem. Commun. 2001, 245 -
4m
O’Donnell MJ.Delgado F.Dominguez E.de Blas J.Scott WL. Tetrahedron: Asymmetry 2001, 12: 821 -
4n
Tzalis D.Knochel P. Tetrahedron Lett. 1999, 40: 3685 -
4o
Corey EJ.Noe MC.Xu F. Tetrahedron Lett. 1998, 39: 5347 -
4p
Lopez A.Moreno-Mañas M.Pleixats R.Roglans A.Ezquerra J.Pedregal C. Tetrahedron 1996, 52: 8365 -
4q
Moreno-Mañas M.Pleixats R.Roglans A. Liebigs Ann. 1995, 1807 -
5a
Arai S.Tokumaru K.Aoyama T. Chem. Pharm. Bull. 2004, 52: 646 -
5b
Zhang F.-Y.Corey EJ. Org. Lett. 2000, 2: 1097 -
6a
Shibuguchi T.Mihara H.Kuramochi A.Sakuraba S.Ohshima T.Shibasaki M. Angew. Chem. Int. Ed. 2006, 45: 4635 -
6b
Wannaporn D.Ishikawa T. Mol. Diversity 2005, 9: 321 -
6c
Lygo B.Allbutt B.Kirton EHM. Tetrahedron Lett. 2005, 46: 4461 -
6d
Tullis JS.Laufersweiler MJ.VanRens JC.Natchus MG.Bookland RG.Almstead NG.Pikul S.De B.Hsieh LC.Janusz MJ.Branch TM.Peng SX.Jin YY.Hudlicky T.Oppong K. Bioorg. Med. Chem. Lett. 2001, 11: 1975 - The benzaldehyde derived glycine imines have been widely used as precursor of 1,3-dipole in [3+2] reactions. For recent examples, see:
-
7a
Yan X.-X.Peng Q.Zhang Y.Zhang K.Hong W.Hou X.-L.Wu Y.-D. Angew. Chem. Int. Ed. 2006, 45: 1979 -
7b
Xue M.-X.Zhang X.-M.Gong L.-Z. Synlett 2008, 691 - For reviews, see:
-
8a
Barrett AGM.Graboski GG. Chem. Rev. 1986, 86: 751 -
8b
Berner OM.Tedeschi L.Enders D. Eur. J. Org. Chem. 2002, 1877 - 9
Rowley M.Leeson PD.Williams BJ.Moore KW.Baker R. Tetrahedron 1992, 48: 3557 - 10
Zindel J.de Meijere A. Synthesis 1994, 190 -
11a
Ayerbe M.Arrieta A.Cossío FP.Linden A. J. Org. Chem. 1998, 63: 1795 -
11b
Vivanco S.Lecea B.Arrieta A.Prieto P.Morao I.Linden A.Cossío FP. J. Am. Chem. Soc. 2000, 122: 6078 - 12
Cashin AL.Torrice MM.McMenimen KA.Lester HA.Dougherty DA. Biochemistry 2007, 46: 630 -
13a
Lu S.-F.Du D.-M.Xu J.Zhang S.-W. J. Am. Chem. Soc. 2006, 128: 7418 -
13b
Lu S.-F.Du D.-M.Xu J. Org. Lett. 2006, 8: 2115 -
13c
Liu H.Xu J.Du D.-M. Org. Lett. 2007, 9: 4725 -
13d
Liu H.Lu S.-F.Xu J.Du D.-M. Chem. Asian J. 2008, 3: 1111 -
13e
Zhou W.-M.Liu H.Du D.-M. Org. Lett. 2008, 10: 2817 - 14
Ono N. The Nitro Group in Organic Synthesis Wiley-VCH; New York: 2001.
References and Notes
General Procedure
for Michael Addition of Glycine Imines to Aromatic Nitroalkenes
To
a stirred solution of nitroalkene (1.2 mmol), LiOTf (16 mg, 0.1
mmol), and ethyl diphenylmethyleneiminoacetate (267 mg, 1 mmol)
or tert-butyl diphenylmethyleneimino-acetate
(295 mg, 1 mmol) in dry THF (1 mL) was added DBU (15 mg, 0.1 mmol)
in dry THF (1 mL). The mixture was stirred at r.t. for 24 h. After
being quenched by H2O, the mixture was extracted by CH2Cl2.
The organic phase was separated and dried with Na2SO4.
The diastereoselectivity was determined by NMR analysis of curde
product. The sample for analysis was purified on column chromatography (SiO2,
200-300 mesh) using PE-EtOAc (20:1) as eluent
and recrystallized from Et2O and PE.
syn
-Ethyl 2-Diphenylmethyleneimino-4-nitro-3-phenyl-butanoate (5a)
According to the general
procedure, a white solid was obtained; mp 84-85 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 1.20
(t, J = 7.2
Hz, 3 H), 4.11-4.16 (m, 2 H), 4.27-4.38 (m, 2
H), 5.14-5.18 (m, 2 H), 6.60-6.62 (d, J = 6.9 Hz,
2 H), 7.14-7.48 (m, 1 1H), 7.64 (d, J = 6.9
Hz, 2 H). IR: 1735, 1551, 1446, 1368, 1316, 1290, 1190, 1024, 695
cm-¹. MS (70 eV, EI): m/z (%) = 416
(3) [M+], 343 (10), 296 (23),
267 (21), 266 (100), 193 (47), 165 (50). Anal. Calcd (%)
for C25H24N2O4: C, 72.10;
H, 5.81; N, 6.73. Found: C, 71.74; H, 5.83; N, 6.55.2.
syn
-Ethyl 2-Diphenylmethyleneimino-3-(4-methylphenyl)-4-nitrobutanoate (5b)
According to the general
procedure, a white solid was obtained; mp 102-103 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 1.19
(t, J = 6.9
Hz, 3 H), 2.29 (s, 3 H), 4.10-4.15 (m, 2 H), 4.27-4.32
(m, 2 H), 5.10-5.12 (m, 2 H), 6.65 (d, J = 6.0 Hz,
2 H), 7.04 (s, 4 H), 7.27-7.45 (m, 6 H), 7.65 (d, J = 7.5 Hz,
2 H). ¹³C NMR (75 MHz, CDCl3): δ = 14.0,
21.0, 46.2, 61.5, 68.7, 76.3, 127.3, 128.0, 128.2, 128.3, 128.6,
128.9, 129.3, 130.9, 134.0, 135.4, 137.4, 138.7, 169.9, 172.6. IR: 1736,
1732, 1619, 1552, 1516, 1446, 1379, 1317, 1288, 1182, 1026, 695
cm-¹. MS (70 eV, EI): m/z (%) = 430
(4) [M+], 413 (3), 357 (7),
310 (17), 267 (27), 266 (100), 238 (22), 193 (69), 165 (61). Anal.
Calcd (%) for C26H26N2O4:
C, 72.54; H, 6.09; N, 6.51. Found: C, 72.36; H, 6.22; N, 6.35.