Subscribe to RSS
DOI: 10.1055/s-0028-1088223
The First Copper-Directed Regio- and anti-Selective Vicinal Acetoxysulfenylation of Nitroalkenes Generated in situ via the Henry Reaction
Publication History
Publication Date:
20 March 2009 (online)
Abstract
The first example of a convenient, efficient, and highly regio- and anti-stereoselective multicomponent synthesis of vicinal acetoxysulfenylnitroalkanes along with the preparation of a probe for demonstrating their utility in heterocyclic synthesis is reported. The protocol strategically involves one-pot sequential Henry (nitroaldol) reaction, dehydration, and vicinal functionalization of the olefinic bond of in situ generated nitrostyrenes. The olefinic bond undergoes copper(I)/imidazole-catalyzed vicinal acetoxysulfenylation with an organodisulfide and acetic acid under air followed by reductive cyclization to afford aziridines in good yields (79-84%).
Key words
multicomponent reaction - Henry reaction - nitroalkanes - stereoselective synthesis - aziridines
-
1a
Dömling A.Ugi I. Angew. Chem. Int. Ed. 2000, 39: 3168 -
1b
Tye H.Whittaker M. Org. Biomol. Chem. 2004, 2: 813 -
1c
Weber L.Illegen K.Almstetter I. Synlett 1999, 366 -
1d
Newmann H.Jacobi A.Gordes D.Spannenberg A.Beller M. J. Am. Chem. Soc. 2001, 123: 8398 -
1e
Kerr DJ.Willis AC.Flynn BL. Org. Lett. 2004, 6: 457 -
1f
Schauble JH.Trauffer EA.Deshpande PP.Evans RD. Synthesis 2005, 1333 -
2a
Baird CP.Rayner CM. J. Chem. Soc., Perkin Trans. 1 1998, 1973 -
2b
Payner CM. , Contemp. Org. Synth. 1996, 3: 499 -
2c
Kondo T.-a. Chem. Rev. 2000, 100: 3205 -
3a
Henry PM. Palladium-Catalyzed Oxidation of Hydrocarbons, In Catalysis by Metal Complexes Vol. 2: Reidel; Dordrecht: 1980. -
3b
Shilov AE.Shul’pin GB. Chem. Rev. 1997, 97: 2879 -
3c
Sen A. Acc. Chem. Res. 1998, 31: 550 -
3d
Stahl SS.Labinger JA.Bercaw JE. Angew. Chem. Int. Ed. 1998, 37: 2181 -
3e
Groves JT.
J. Porphyrins Phthalocyanines 2000, 4: 350 -
3f
Fekl U.Goldberg KI. Adv. Inorg. Chem. 2003, 54: 259 -
4a
Gabriel S. Ber. Dtsch Chem. Ges. 1888, 21: 1049 -
4b
Tanner D. Angew. Chem., Int. Ed. Engl. 1994, 33: 599 -
4c
Aziridines and
Epoxides in Organic Synthesis
Yudin AK. Wiley-VCH; Weinheim: 2006. -
5a
Hu XE. Tetrahedron 2004, 60: 2701 -
5b
Stamm HJ. Prakt. Chem. Chem. Ztg. 1999, 341: 319 -
6a
Sweeney JB. Chem. Soc. Rev. 2002, 31: 247 -
6b
Graham MA.Wadsworth AH.Thornton-Pett M.Rayner CM. Chem. Commun. 2001, 966 -
7a
Hodgkinson TJ.Shipman M. Tetrahedron 2001, 57: 4467 -
7b
Coleman RS.Kong JS.Richardson TE. J. Am. Chem. Soc. 1999, 121: 9088 -
7c
Coleman RS.Li J.Navarro A. Angew. Chem. Int. Ed. 2001, 40: 1736 -
8a
Kasai M.Kono M. Synlett 1992, 778 -
8b
Remers WA. In The Chemistry of Antitumor Antibiotics Vol. 1: Wiley-Interscience; New York: 1979. p.242 - 9
Katoh T.Itoh E.Yoshino T.Terashima S. Tetrahedron 1997, 53: 10229 -
10a
Ballini R.Rosini G. Synthesis 1988, 833 -
10b
Rosini G.Ballini R.Petrini M.Marotta E.Righi P. Org. Prep. Proced. Int. 1990, 22: 707 -
10c
Ballini R.Marziali P.Mozzicafreddo A. J. Org. Chem. 1996, 61: 3209 -
10d
Ballini R.Bosica G. Tetrahedron Lett. 1996, 37: 8027 -
10e
Ballini R.Bosica G. J. Org. Chem. 1997, 62: 425 -
10f
Ballini R.Petrini M. Tetrahedron 2004, 60: 1017 -
10g
Amantini D.Fringuelli F.Piermatti O.Pizzo F.Vaccaro C. J. Org. Chem. 2003, 68: 9263 -
10h
Marotta E.Righi P.Rosini G. Tetrahedron Lett. 1998, 39: 1041 -
10i
Areces P.Gil MV.Higes FJ.Romàn E.Serrano JA. Tetrahedron Lett. 1998, 39: 8557 - 11
Pinnick HW. Org. React. 1990, 38: 655 -
12a
Fluharty AL. In The Chemistry of the Thiol Group Part 2:Patai S. Wiley; New York: 1974. p.589 -
12b
Clark JH. Chem. Rev. 1980, 80: 429 -
12c
Fujita E.Nagao Y. J. Bioorg. Chem. 1977, 6: 287 -
12d
Trost BM.Keeley DE. J. Org. Chem. 1975, 40: 2013 -
12e
Shono T.Matsumura Y.Kashimura S.Hatanaka K. J. Am. Chem. Soc. 1979, 101: 4752 -
12f
Nishimura K.Ono M.Nagaoka Y.Tomioka K. J. Am. Chem. Soc. 1997, 119: 12974 - 13
Patani GA. Chem. Rev. 1996, 96: 3147 - 14
Yang M.-H.Yan G.-B.Zheng Y.-F. Tetrahedron Lett. 2008, 49: 6471 -
15a
Bewick A.Mellor JM.Milano D.Owton WM. J. Chem. Soc., Perkin Trans. 1 1985, 1045 -
15b
Taniguchi N. J. Org. Chem. 2006, 71: 7874 -
16a
Yadav LDS.Yadav S.Rai VK. Tetrahedron 2006, 62: 5464 -
16b
Yadav LDS.Yadav S.Rai VK. Green Chem. 2006, 8: 455 -
16c
Yadav LDS.Rai A.Rai VK.Awasthi C. Synlett 2007, 1905 -
16d
Yadav LDS.Awasthi C.Rai VK.Rai A. Tetrahedron Lett. 2007, 48: 4899 -
16e
Yadav LDS.Rai A.Rai VK.Awasthi C. Tetrahedron 2008, 64: 1420 -
16f
Yadav LDS.Patel R.Srivastava VP. Synlett 2008, 583 -
16g
Yadav LDS.Rai A. Tetrahedron Lett. 2008, 49: 5751 -
16h
Yadav LDS.Rai A. Tetrahedron Lett. 2009, 50: 640 -
17a
Yan S.Gao Y.Xing R.Shen Y.Liu Y.Wu P.Wu H. Tetrahedron 2008, 64: 6294 -
17b
Jang Y.-J.Lin W.-W.Shih Y.-K.Liu J.-T.Hwang M.-H.Yao CF. Tetrahedron 2003, 59: 4979 -
19a
Leino R.Lonnqvist J. Tetrahedron Lett. 2004, 45: 8489 -
19b
Silveira CC.Mendes SR. Tetrahedron Lett. 2007, 48: 7469 -
20a
Kwong FY.Buchwald SL. Org. Lett. 2002, 4: 3517 -
20b
Klapars A.Huang X.Buchwald SL. J. Am. Chem. Soc. 2002, 124: 7421 -
23a
Kamimura A.Mitsudera H.Asano S.Kakehi A.
J. Org. Chem. 1999, 64: 6353 -
23b
Albertshofer K.Thayumanavan R.Utsumi N.Tanaka F.Barbas CF. Tetrahedron Lett. 2007, 48: 693 -
24a
Gaillot J.-M.Gelas-Mialhe Y.Veissere R. Chem. Lett. 1983, 1137 -
24b
Bassindale AR.Kyle PA.Soobramanien M.-C.Taylor PG. J. Chem. Soc., Perkin Trans. 1 2000, 1173 -
24c
Maclaren AB.Sweeney JB. Org. Lett. 1999, 1: 1339
References and Notes
General Procedure
for the Synthesis of 1,2-Acetoxy-sulfenylnitroalkane 3a
A
mixture of trans-β-nitrostyrene 5a (Ar = Ph,
2 mmol), PhSSPh (2, 1 mmol), CuI (0.1 mmol),
imidazole (0.1 mmol), and AcOH (0.2 mL) in MeCN (5 mL) was stirred
at 70-80 ˚C under air for 5 h. After completion
of the reaction (monitored by TLC), H2O (10 mL) was added,
and the product was extracted with CH2Cl2 (3 × 15
mL). The combined organic extract was dried over Na2SO4,
filtered, concentrated under reduced pressure, and the crude product thus
obtained was purified by SiO2 column chromatography using
EtOAc-n-hexane (2:5) as eluent
to afford an analytically pure sample of 3a (Ar = R = Ph). Characterization
data of compound 3a is given in ref. 21.
General Procedure
for the Synthesis of 1,2-Acetoxy-sulfenylnitroalkanes 3
A
mixture of an aromatic aldehyde 1 (2 mmol),
nitromethane (2 mmol), RSSR 2 (1 mmol),
CuI (0.1 mmol), imidazole (0.1 mmol), NH4OAc (2 mmol),
and AcOH (0.2 mL) in MeCN (5 mL) was stirred at 70-80 ˚C
under air for the indicated time 6-9 h (Table
[²]
). After completion of
the reaction (monitored by TLC), H2O (10 mL) was added,
and the product was extracted with CH2Cl2 (3 × 15
mL). The combined organic phase was dried over Na2SO4,
filtered, concentrated under reduced pressure, and the crude product thus
obtained was purified by SiO2 column chromatography using
EtOAc-n-hexane (2:5) as eluent
to afford an analytically pure sample of 3.
Characterization Data of Representative Compounds
Compound 3a: yellowish solid, yield 92%,
mp 167-169 ˚C. IR (KBr): νmax = 3005,
2988, 2240, 1600, 1582, 1565, 1451, 753, 705 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 2.07 (s,
3 H, CH3CO), 5.57 (d, 1 H, J = 7.6
Hz, OCH), 5.85 (d, 1 H, J = 7.6
Hz, SCH), 7.13-7.42 (m, 10 Harom). ¹³C
NMR (100 MHz, CDCl3): δ = 21.9, 77.9,
98.4, 124.3, 125.2, 126.9, 127.9, 129.1, 135.2, 142,4, 169.7. MS
(EI): m/z = 317 [M+]. Anal.
Calcd (%) for C16H15NO4S:
C, 60.55; H, 4.76; N, 4.41. Found: C, 60.90; H, 4.47; N, 4.10.
Compound 3b:
yellowish solid, yield 88%, mp 195-197 ˚C. IR
(KBr): νmax = 3008, 2985, 2241, 1603,
1585, 1563, 1450, 845, 752, 706 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 2.03 (s,
3 H, CH3CO), 5.52 (d, 1 H, J = 7.7
Hz, OCH), 5.89 (d, 1 H, J = 7.7
Hz, SCH), 7.15-7.45 (m, 9 Harom). ¹³C
NMR (100 MHz, CDCl3): δ = 17.9, 78.7,
97.4, 123.6, 126.1, 127.8, 129.0, 132.7, 134.9, 139.4, 171.5. MS
(EI): m/z = 351 [M+]. Anal.
Calcd (%) for C16H14ClNO4S:
C, 54.62; H, 4.01; N, 3.98. Found: C, 54.24; H, 4.23; N, 3.71.
Compound 3h: yellowish solid, yield 90%,
mp 171-173 ˚C. IR (KBr): νmax = 3004,
2989, 2242, 1601, 1583, 1567, 1452, 755, 702 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 0.89 (t,
3 H, J = 7.2Hz,
CH3), 1.43 (m, 2 H, CH2),
2.05 (s, 3 H, CH3CO), 2.47 (t, 2 H, J = 7.2Hz,
CH2), 5.53 (d, 1 H, J = 7.6
Hz, OCH), 5.82 (d, 1 H, J = 7.6
Hz, SCH), 7.25-7.38 (m, 5 Harom). ¹³C
NMR (100 MHz, CDCl3) δ = 15.3, 22.1,
23.7, 31.5, 77.9, 95.0, 126.9, 127.8, 130.3, 141.4, 171.2. MS (EI): m/z = 283 [M+].
Anal. Calcd (%) for C13H17NO4S:
C, 55.11; H, 6.05; N, 4.94. Found: C, 54.74; H, 6.27; N, 4.63.
Compound 3i: yellowish solid, yield 85%,
mp 185-188 ˚C. IR (KBr): νmax = 3007,
2986, 2239, 1605, 1581, 1566, 1454, 842, 756, 703 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 0.93 (t, 3
H, J = 7.3
Hz, CH3), 1.45 (m, 2 H, CH2), 2.07 (s, 3 H, CH3CO),
2.45 (t, 2 H, J = 7.3
Hz, CH2), 5.59 (d, 1 H, J = 7.8 Hz,
OCH), 5.91 (d, 1 H, J = 7.8
Hz, SCH), 7.27-7.41 (m, 4 Harom). ¹³C
NMR (100 MHz, CDCl3): δ = 13.4, 18.3,
24.9, 29.6, 78.3, 94.8, 128.9, 129.4, 132.9, 138.6, 171.2. MS (EI): m/z = 317 [M+].
Anal. Calcd (%) for C13H16ClNO4S:
C, 49.13; H, 5.07; N, 4.41. Found: C, 49.34; H, 4.81; N, 4.78.
General Procedure
for the Synthesis of Aziridines 4
A mixture of 1,2-acetoxysulfenylnitroalkanes 3 (2 mmol) and Fe powder (12 mmol) in AcOH
(5 mL) was stirred at 45-50 ˚C for 3-4
h (Table
[³]
), then
allowed to cool at r.t. The reaction mixture was neutralized with
NaHCO3 soln, and the product was extracted with EtOAc
(3 × 10 mL). The combined organic phase
was dried over anhyd Na2SO4, the solvent was
removed under reduced pressure, and the crude product thus obtained
was purified by SiO2 column chromatography using EtOAc-n-hexane (3:7) as eluent to afford an
analytically pure sample of 4.
Characterization Data of Representative Compounds
Compound 4a: white needles, yield 82%,
mp 63-65 ˚C. IR (KBr): νmax = 3390,
3009, 2985, 1516, 1452, 1449, 1341, 755, 705, 638 cm-¹. ¹H
NMR (400 MHz. CDCl3) δ = 1.70 (1 H,
br s, NH, exch. D2O), 2.97 (d, 1 H, J = 3.9
Hz, 2-H), 3.09 (d, 1 H, J = 3.9
Hz, 3-H), 7.04-7.21 (m, 10 Harom). ¹³C
NMR (100 MHz, CDCl3): δ = 43.7, 44.9,
125.3, 126.8, 127.5, 128.9, 129.8, 130.9, 136.7, 138.4. MS (EI): m/z = 241 [M+]. Anal.
Calcd (%) for C14H13NS: C, 73.97;
H, 5.76; N, 6.16. Found: C, 73.70; H, 5.97; N, 6.45.