Subscribe to RSS
DOI: 10.1055/s-0029-1214158
Osteomyelitis of the Long Bones
Publication History
Publication Date:
30 April 2009 (online)
ABSTRACT
Long bone osteomyelitis presents a variety of challenges to the physician. The severity of the disease is staged depending upon the infection's particular features, including its etiology, pathogenesis, extent of bone involvement, duration, and host factors particular to the individual patient (infant, child, adult, or immunocompromised). Long bone osteomyelitis may be either hematogenous or caused by a contiguous spread of infection. A single pathogenic organism is almost always recovered from the bone in hematogenous osteomyelitis; Staphylococcus aureus is the most common organism isolated. A variety of multidrug-resistant organisms of bacteria continue to be a source of concern in arresting infection. The primary weapons to treat these infections are culture-specific antibiotics, aggressive debridement, muscle flaps, and bone grafts. This article offers a basic review of the classification, etiology, epidemiology, pathogenesis, and treatment of long bone osteomyelitis.
KEYWORDS
Osteomyelitis - long bones - antibiotics - debridement
REFERENCES
- 1 Waldvogel F A, Medoff G, Swartz M N. Osteomyelitis—a review of clinical features, therapeutic considerations and unusual aspects. 3: osteomyelitis associated with vascular insufficiency. N Engl J Med. 1970; 282 316-322
- 2 Cierny III G, Mader J T, Penninck J J. A clinical staging system for adult osteomyelitis. Clin Orthop Relat Res. 2003; 414 7-24
- 3 Lew D P, Waldvogel F A. Osteomyelitis. N Engl J Med. 1997; 336 999-1007
- 4 Song K M, Sloboda J F. Acute hematogenous osteomyelitis in children. J Am Acad Orthop Surg. 2001; 9 166-175
- 5 De Jonghe M, Glaesener G. Type B Haemophilus influenzae infections. Experience at the Pediatric Hospital of Luxembourg. Bull Soc Sci Med Grand Duche Luxemb. 1995; 132 17-20
- 6 Blyth M J, Kincaid R, Craigen M A, Bennet G C. The changing epidemiology of acute and subacute haematogenous osteomyelitis in children. J Bone Joint Surg Br. 2001; 83 99-102
- 7 Meier J L, Beekmann S E. Mycobacterial and fungal infections of bone and joints. Curr Opin Rheumatol. 1995; 7 329-336
- 8 Arnold S R, Elias D, Buckingham S C et al.. Changing patterns of acute hematogenous osteomyelitis and septic arthritis: emergence of community-associated methicillin-resistant Staphylococcus aureus. J Pediatr Orthop. 2006; 26 703-708
- 9 Gardam M, Lim S. Mycobacterial osteomyelitis and arthritis. Infect Dis Clin North Am. 2005; 19 819-830
- 10 Murray C K, Roop S A, Hospenthal D R et al.. Bacteriology of war wounds at the time of injury. Mil Med. 2006; 171 826-829
- 11 Hawley J S, Murray C K, Griffith M E et al.. Susceptibility of Acinetobacter strains isolated from deployed U.S. military personnel. Antimicrob Agents Chemother. 2007; 51 376-378
- 12 Yun H C, Murray C K, Roop S A, Hospenthal D R, Gourdine E, Dooley D P. Bacteria recovered from patients admitted to a deployed U.S. military hospital in Baghdad, Iraq. Mil Med. 2006; 171 821-825
- 13 Pollak A N, Calhoun J H. Introduction. J Am Acad Orthop Surg. 2006; 14(10, Suppl) viii-ix
- 14 Beronius M, Bergman B, Anderson R. Vertebral osteomyelitis in Goteborg, Sweden: a retrospective study of patients during 1990–95. Scand J Infect Dis. 2001; 33 527-532
- 15 Dahl L B, Hoyland A L, Dramsdahl H, Kaaresen P I. Acute osteomyelitis in children: a population-based retrospective study 1965 to 1994. Scand J Infect Dis. 1998; 30 573-577
- 16 Trobs R, Moritz R, Buhligen U et al.. Changing pattern of osteomyelitis in infants and children. Pediatr Surg Int. 1999; 15 363-372
- 17 Epps Jr C H, Bryant III D D, Coles M J, Castro O. Osteomyelitis in patients who have sickle-cell disease. Diagnosis and management. J Bone Joint Surg Am. 1991; 73 1281-1294
- 18 Moutschen M P, Scheen A J, Lefebvre P J. Impaired immune responses in diabetes mellitus: analysis of the factors and mechanisms involved. Relevance to the increased susceptibility of diabetic patients to specific infections. Diabete Metab. 1992; 18 187-201
- 19 Emslie K R, Ozanne N R, Nade S M. Acute haematogenous osteomyelitis: an experimental model. J Pathol. 1983; 141 157-167
- 20 Ciampolini J, Harding K G. Pathophysiology of chronic bacterial osteomyelitis. Why do antibiotics fail so often?. Postgrad Med J. 2000; 76 479-483
- 21 Gristina A G, Oga M, Webb L X, Hobgood C D. Adherent bacterial colonization in the pathogenesis of osteomyelitis. Science. 1985; 228 990-993
- 22 Nickel J C, Ruseska I, Wright J B, Costerton J W. Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material. Antimicrob Agents Chemother. 1985; 27 619-624
- 23 Anwar H, Dasgupta M K, Costerton J W. Testing the susceptibility of bacteria in biofilms to antibacterial agents. Antimicrob Agents Chemother. 1990; 34 2043-2046
- 24 Wong A L, Sakamoto K M, Johnson E E. Differentiating osteomyelitis from bone infarction in sickle cell disease. Pediatr Emerg Care. 2001; 17 60-63; , quiz 64
- 25 Treves S, Khettry J, Broker F H, Wilkinson R H, Watts H. Osteomyelitis: early scintigraphic detection in children. Pediatrics. 1976; 57 173-186
- 26 Russin L D, Staab E V. Unusual bone-scan findings in acute osteomyelitis: case report. J Nucl Med. 1976; 17 617-619
- 27 Trainor V C, Udy R K, Bremer P J, Cook G M. Survival of Streptococcus pyogenes under stress and starvation. FEMS Microbiol Lett. 1999; 176 421-428
- 28 Barer M R, Harwood C R. Bacterial viability and culturability. Adv Microb Physiol. 1999; 41 93-137
- 29 Lleò Mdel M, Benedetti D, Tafi M C, Signoretto C, Canepari P. Inhibition of the resuscitation from the viable but non-culturable state in Enterococcus faecalis. Environ Microbiol. 2007; 9 2313-2320
- 30 Ericsson H M, Sherris J C. Antibiotic sensitivity testing. Report of an international collaborative study. Acta Pathol Microbiol Scand [B] Microbiol Immunol. 1971; 217(Suppl 217)
-
31 Turnidge J D, Ferraro M J, Jorgensen J H.
Susceptibility test methods: general considerations . In: Murray PR, Baron EJ, Jorgensen JH Manual of Clinical Microbiology. 8th ed. Washington, DC; ASM Press 2003: 1102-1107 - 32 Menozzi M G, Eigner U, Covan S et al.. Two-center collaborative evaluation of performance of the BD phoenix automated microbiology system for identification and antimicrobial susceptibility testing of gram-negative bacteria. J Clin Microbiol. 2006; 44 4085-4094
- 33 O'Hara C M. Evaluation of the Phoenix 100 ID/AST system and NID panel for identification of Enterobacteriaceae, Vibrionaceae, and commonly isolated nonenteric gram-negative bacilli. J Clin Microbiol. 2006; 44 928-933
- 34 Roveta S, Marchese A, Debbia E A. Antibiotic susceptibility tests directly on urine samples using Uro-Quick, a rapid automated system. J Chemother. 2006; 18 12-19
- 35 Itani L Y, Cherry M A, Araj G F. Efficacy of BACTEC TB in the rapid confirmatory diagnosis of mycobacterial infections. A Lebanese tertiary care center experience. J Med Liban. 2005; 53 208-212
- 36 Sader H S, Fritsche T R, Jones R N. Accuracy of three automated systems (MicroScan WalkAway, VITEK, and VITEK 2) for susceptibility testing of Pseudomonas aeruginosa against five broad-spectrum beta-lactam agents. J Clin Microbiol. 2006; 44 1101-1104
- 37 Biedenbach D J, Jones R N. Interpretive errors using an automated system for the susceptibility testing of imipenem and aztreonam. Diagn Microbiol Infect Dis. 1995; 21 57-60
- 38 Biedenbach D J, Marshall S A, Jones R N. Accuracy of cefepime antimicrobial susceptibility testing results for Pseudomonas aeruginosa tested on the MicroScan WalkAway System. Diagn Microbiol Infect Dis. 1999; 33 305-307
- 39 Jones R N, Biedenbach D J, Marshall S A, Pfaller M A, Doern G V. Evaluation of the Vitek system to accurately test the susceptibility of Pseudomonas aeruginosa clinical isolates against cefepime. Diagn Microbiol Infect Dis. 1998; 32 107-110
- 40 Saegeman V, Huynen P, Colaert J, Melin P, Verhaegen J. Susceptibility testing of Pseudomonas aeruginosa by the Vitek 2 system: a comparison with Etest results. Acta Clin Belg. 2005; 60 3-9
- 41 Reller L B, Stratton C W. Serum dilution test for bactericidal activity. II. Standardization and correlation with antimicrobial assays and susceptibility tests. J Infect Dis. 1977; 136 196-204
- 42 Stein A, Raoult D. Colistin: an antimicrobial for the 21st century?. Clin Infect Dis. 2002; 35 901-902
- 43 Jones R N, Anderegg T R, Swenson J M. Quality control guidelines for testing gram-negative control strains with polymyxin B and colistin (polymyxin E) by standardized methods. J Clin Microbiol. 2005; 43 925-927
- 44 Butt W P. The radiology of infection. Clin Orthop Relat Res. 1973; 96 20-30
- 45 Jones A G, Francis M D, Davis M A. Bone scanning: radionuclidic reaction mechanisms. Semin Nucl Med. 1976; 6 3-18
- 46 Kuhn J P, Berger P E. Computed tomographic diagnosis of osteomyelitis. Radiology. 1979; 130 503-506
- 47 Propst-Proctor S L, Dillingham M F, McDougall I R, Goodwin D. The white blood cell scan in orthopedics. Clin Orthop Relat Res. 1982; 168 157-165
- 48 Pineda C, Vargas A, Rodriguez A V. Imaging of osteomyelitis: current concepts. Infect Dis Clin North Am. 2006; 20 789-825
- 49 Merkel K D, Brown M L, Dewanjee M K, Fitzgerald Jr R H. Comparison of indium-labeled-leukocyte imaging with sequential technetium-gallium scanning in the diagnosis of low-grade musculoskeletal sepsis. A prospective study. J Bone Joint Surg Am. 1985; 67 465-476
- 50 Al-Sheikh W, Sfakianakis G N, Mnaymneh W et al.. Subacute and chronic bone infections: diagnosis using In-111, Ga-67 and Tc-99m MDP bone scintigraphy, and radiography. Radiology. 1985; 155 501-506
- 51 Termaat M F, Raijmakers P G, Scholten H J, Bakker F C, Patka P, Haarman H J. The accuracy of diagnostic imaging for the assessment of chronic osteomyelitis: a systematic review and meta-analysis. J Bone Joint Surg Am. 2005; 87 2464-2471
- 52 Singh B, Mittal B R, Bhattacharya A, Aggarwal A, Nagi O N, Singh A K. Technetium-99m ciprofloxacin imaging in the diagnosis of postsurgical bony infection and evaluation of the response to antibiotic therapy: a case report. J Orthop Surg (Hong Kong). 2005; 13 190-194
- 53 Britton K E, Wareham D W, Das S S et al.. Imaging bacterial infection with (99m)Tc-ciprofloxacin (infecton). J Clin Pathol. 2002; 55 817-823
- 54 Zhuang H, Duarte P S, Pourdehand M, Shnier D, Alavi A. Exclusion of chronic osteomyelitis with F-18 fluorodeoxyglucose positron emission tomographic imaging. Clin Nucl Med. 2000; 25 281-284
- 55 Kalicke T, Schmitz A, Risse J H et al.. Fluorine-18 fluorodeoxyglucose PET in infectious bone diseases: results of histologically confirmed cases. Eur J Nucl Med. 2000; 27 524-528
- 56 Jones-Jackson L, Walker R, Purnell G et al.. Early detection of bone infection and differentiation from post-surgical inflammation using 2-deoxy-2-[18F]-fluoro-D-glucose positron emission tomography (FDG-PET) in an animal model. J Orthop Res. 2005; 23 1484-1489
- 57 Meller J, Koster G, Liersch T et al.. Chronic bacterial osteomyelitis: prospective comparison of (18)F-FDG imaging with a dual-head coincidence camera and (111)In-labelled autologous leucocyte scintigraphy. Eur J Nucl Med Mol Imaging. 2002; 29 53-60
- 58 de Winter F, van de Wiele C, Vogelaers D, de Smet K, Verdonk R, Dierckx R A. Fluorine-18 fluorodeoxyglucose-position emission tomography: a highly accurate imaging modality for the diagnosis of chronic musculoskeletal infections. J Bone Joint Surg Am. 2001; 83 651-660
- 59 El-Haddad G, Zhuang H, Gupta N, Alavi A. Evolving role of positron emission tomography in the management of patients with inflammatory and other benign disorders. Semin Nucl Med. 2004; 34 313-329
- 60 Love C, Tomas M B, Tronco G G, Palestro C J. FDG PET of infection and inflammation. Radiographics. 2005; 25 1357-1368
- 61 Basu S, Chryssikos T, Houseni M et al.. Potential role of FDG PET in the setting of diabetic neuro-osteoarthropathy: can it differentiate uncomplicated Charcot's neuroarthropathy from osteomyelitis and soft-tissue infection?. Nucl Med Commun. 2007; 28 465-472
- 62 Fukuda Y, Ando K, Ishikura R et al.. Superparamagnetic iron oxide (SPIO) MRI contrast agent for bone marrow imaging: differentiating bone metastasis and osteomyelitis. Magn Reson Med Sci. 2006; 5 191-196
- 63 Greenberg R N, Newman M T, Shariaty S, Pectol R W. Ciprofloxacin, lomefloxacin, or levofloxacin as treatment for chronic osteomyelitis. Antimicrob Agents Chemother. 2000; 44 164-166
- 64 Shirtliff M E, Calhoun J H, Mader J T. Comparative evaluation of oral levofloxacin and parenteral nafcillin in the treatment of experimental methicillin-susceptible Staphylococcus aureus osteomyelitis in rabbits. J Antimicrob Chemother. 2001; 48 253-258
-
65 Cierny III G, Mader J T.
The surgical treatment of adult osteomyelitis . In: Evarts CMC Surgery of the Musculoskeletal System. New York, NY; Churchill Livingstone 1983: 15-35 - 66 Mader J T, Ortiz M, Calhoun J H. Update on the diagnosis and management of osteomyelitis. Clin Podiatr Med Surg. 1996; 13 701-724
- 67 May Jr J W, Jupiter J B, Gallico III G G, Rothkopf D M, Zingarelli P. Treatment of chronic traumatic bone wounds. Microvascular free tissue transfer: a 13-year experience in 96 patients. Ann Surg. 1991; 214 241-250
- 68 Papagelopoulos P J, Mavrogenis A F, Tsiodras S, Vlastou C, Giamarellou H, Soucacos P N. Calcium sulphate delivery system with tobramycin for the treatment of chronic calcaneal osteomyelitis. J Int Med Res. 2006; 34 704-712
- 69 Kent M E, Rapp R P, Smith K M. Antibiotic beads and osteomyelitis: here today, what's coming tomorrow?. Orthopedics. 2006; 29 599-603
- 70 Diefenbeck M, Muckley T, Hofmann G O. Prophylaxis and treatment of implant-related infections by local application of antibiotics. Injury. 2006; 37(Suppl 2) S95-S104
-
71 Mader J T, Calhoun J H.
Adult long bone osteomyelitis . In: Mader JT, Calhoun JH Musculoskeletal Infections. New York, NY; Marcel Dekker 2003: 149-182 - 72 Thonse R, Conway J. Antibiotic cement-coated interlocking nail for the treatment of infected nonunions and segmental bone defects. J Orthop Trauma. 2007; 21 258-268
- 73 Ohtsuka H, Yokoyama K, Higashi K et al.. Use of antibiotic-impregnated bone cement nail to treat septic nonunion after open tibial fracture. J Trauma. 2002; 52 364-366
- 74 Paley D, Herzenberg J E. Intramedullary infections treated with antibiotic cement rods: preliminary results in nine cases. J Orthop Trauma. 2002; 16 723-729
- 75 Anthony J P, Mathes S J, Alpert B S. The muscle flap in the treatment of chronic lower extremity osteomyelitis: results in patients over 5 years after treatment. Plast Reconstr Surg. 1991; 88 311-318
- 76 Evans R P, Nelson C L, Harrison B H. The effect of wound environment on the incidence of acute osteomyelitis. Clin Orthop Relat Res. 1993; 286 289-297
- 77 Calhoun J H, Cantrell J, Cobos J et al.. Treatment of diabetic foot infections: Wagner classification, therapy, and outcome. Foot Ankle. 1988; 9 101-106
- 78 Webb L X, Wagner W, Carroll D, Tyler H, Coldren F, Martin E. Osteomyelitis and intraosteoblastic Staphylococcus aureus. J Surg Orthop Adv. 2007; 16 73-78
- 79 Ellington J K, Harris M, Hudson M C, Vishin S, Webb L X, Sherertz R. Intracellular Staphylococcus aureus and antibiotic resistance: implications for treatment of staphylococcal osteomyelitis. J Orthop Res. 2006; 24 87-93
Jason H CalhounM.D. F.A.C.S.
Frank J. Kloenne Chair in Orthopaedic Surgery, Professor and Chair, Department of Orthopaedics N-1043 Doan Hall
410 West 10th Ave, The Ohio State Medical Center, Columbus, OH 43210
Email: calhounj@osumc.edu