Subscribe to RSS
DOI: 10.1055/s-0029-1216740
Peroxide Dyads from Natural Artemisinin and Synthetic Perorthoesters and Endoperoxides
Publication History
Publication Date:
04 May 2009 (online)
Abstract
The hydroxyethyl-substituted bicyclic perorthoesters are building blocks for the coupling with artesunic acid. Peroxides were synthesized in a three-step process from unsaturated aldol adducts by singlet oxygenation and subsequent acid-catalyzed peroxyacetalization. Coupling to artesunic acid by the Mitsonobu method furnised the trioxane dyad in moderate yields. Late introduction of an endoperoxide bridge was achieved from the dehydroartemisinin-sorbinol adduct via photooxygenation.
Key words
artemisinin - photochemistry - singlet oxygen - peroxides - dyads
-
1a
Klayman DL. Science 1985, 228: 1049 -
1b
O’Neill PM.Posner GH. J. Med. Chem. 2004, 47: 2945 -
1c
Zhou WS.Xu XX. Acc. Chem. Res. 1994, 27: 211 -
1d
Robert A.Dechy-Cabaret O.Cazelles J.Meunier B. Acc. Chem. Res. 2002, 35: 167 -
1e
Meunier B. Acc. Chem. Res. 2008, 41: 69 -
2a
Vennerstrom JL.Arbe-Barnes S.Brun R.Charman SA.Chiu FCK.Chollet J.Dong YX.Dorn A.Hunziker D.Matile H.McIntosh K.Padmanilayam M.Tomas JS.Scheurer C.Scorneaux B.Tang YQ.Urwyler H.Wittlin S.Charman WN. Nature (London) 2004, 430: 900 -
2b
Ellis GL.Amewu R.Sabbani S.Stocks PA.Shone A.Stanford D.Gibbons P.Davies J.Vivas L.Charnaud S.Bongard E.Hall C.Rimmer K.Lozanom S.Jesús M.Gargallo D.Ward SA.O’Neill PM. J. Med. Chem. 2008, 51: 2170 - 3
Weissbuch I.Leiserowitz L. Chem. Rev. 2008, 108: 4899 - 4
Griesbeck AG.Blunk D.El-Idreesy TT.Raabe A. Angew. Chem. Int. Ed. 2007, 46: 8883 - 5
Griesbeck AG.Adam A.Bartoschek A.El-Idreesy TT. Photochem. Photobiol. Sci. 2003, 2: 877 - 6
Griesbeck AG.El-Idreesy TT.Bartoschek A. Pure Appl. Chem. 2005, 77: 1059 - 7
Posner GH.Chang W.Hess L.Woodard L.Sinishtaj S.Usera AR.Maio W.Rosenthal AS.Kalinda AS.Dángelo JG.Petersen KS.Stohler R.Chollet J.Santo-Tomas J.Snyder C.Rottmann M.Wittlin S.Brun R.Shapiro TA. J. Med. Chem. 2008, 51: 1035 - 8
Evans DA.Carreira EM. Tetrahedron Lett. 1990, 31: 4703 - 9
Chen KM.Hardtmann GE.Prasad K.Repic O.Shapiro MJ. Tetrahedron Lett. 1987, 28: 155 - 10
Evans DA.Chapman KT.Carreira EM. J. Am. Chem. Soc. 1988, 110: 3560 - 13
Jin HX.Liu HH.Zhang Q.Wu YK. J. Org. Chem. 2005, 70: 4240 - 16
Schmidt RR.Hoffmann M. Tetrahedron Lett. 1982, 23: 409
References and Notes
Typical Photooxygenation
Procedure
A solution of 160 mg (0.75 mmol) of the syn-diol 2 CCl4
(30
mL, 5˙10-³ M in TPP) was irradiated
with a 150 W HP mercury lamp, cut-off filter for λ > 370
nm, under constant purging with oxygen. After completion of the
reaction (TLC control, KI spot), the solvent was evaporated to give
184 mg of a 76:24 mixture of diastereomeric hydroperoxides 3a.
Major diastereomer: ¹H
NMR (300 MHz, CDCl3): δ = 1.24 (t,
3 H, J = 7.2
Hz, CH3CH2), 1.58 (m, 2 H, CH2),
1.72 (s,
3 H, CH3), 2.48 (d, 2 H, J = 6.6 Hz, CH2),
4.05 (m, 1 H, CHOH), 4.14 (q, 2 H, J = 7.2
Hz, CH3CH2), 4.18 (m, 1 H, CHOOH), 4.29 (m,
1 H, CHOH), 5.03 (s, 2 H, C=CH2).
¹³C
NMR (75 MHz, CDCl3): δ = 14.1 (CH3CH2),
18.3 (CH3), 38.1 (CH2), 41.5 (CH2),
60.8 (CH2CH3), 68.3 (CHOH), 71.3 (CHOH), 92.7
(CHOOH), 116.7 (CH2=C), 141.0 (CH2=C), 172.2
(C=O).
Typical Peroxyacetalization
Procedure
A solution of 170 mg (0.7 mmol) of the hydroperoxide 3b in CH2Cl2 (10
mL) was treated with triethylorthopropionate (0.45 mL, 2.1 mmol,
3 equiv) and catalytic amounts of PPTS at r.t. After stirring overnight,
sat. NaHCO3 soln was added and the aqueous phase extracted
with CH2Cl2 (2 × 10
mL) washed with brine (10 mL) and NaHCO3 soln (10 mL),
dried and purified by column chromatography to give 72 mg (38%)
of 5a as a colorless oil.
¹H
NMR (300 MHz, CDCl3) δ = 0.87 (t, 3
H, J = 7.1
Hz, CH3CH2), 1.21 (t, 3 H, J = 7.2
Hz, CH3CH2O), 1.62 (q, 2 H, J = 7.1
Hz, CH3CH2), 1.79 (s, 3 H, CH3),
1.80 (m, 1 H, CH2), 2.06 (m, 1 H, CH2), 2.38
(m, 1 H, CH2), 2.51 (m, 1 H, CH2), 4.04 (q,
2 H, J = 7.2
Hz, OCH2CH3), 4.17 (d, 1 H, J = 5.4
Hz, CHO), 4.39 (s, 1 H, CHOO), 5.01 (s, 1 H, CH2=C),
5.10 (s, 1 H, CH2=C), 5.22 (m, 1 H, OCHCH2). ¹³C
NMR (75 MHz, CDCl3) δ = 6.6 (CH3CH2),
14.2 (CH3CH2O), 19.2 (CH3), 30.6
(CH3CH2), 33.1 (CH2), 42.1 (CH2),
60.5 (OCH2CH3), 66.0 (CHO), 66.6 (OCHCH2),
83.9 (CHOO), 114.3 (OCOO), 115.0 (C=CH2), 141.2
(C=CH2), 170.3 (C=O).
Artemisinin and artemisinin derivatives were purchased from Plant Extracts, Xian, China.
15
Spectral Data
of 7 (Numbering Corresponds to the Artemisinin Skeleton)
¹H
NMR (300 MHz, CDCl3): δ = 0.85 (d,
3 H, J = 7.1
Hz, H9-Me), 0.96 (d, 3 H, J = 5.8
Hz, CH3, H6-Me), 1.03 (m, 1 H, C7), 1.15-1.38
(m, 2 H, 2 × CH, H5a, H6), 1.41 (s, 3
H, CH3, H3-Me), 1.45 (s, 3 H, CH3), 1.69 (s,
3 H, CH3), 1.48-2.09 (m, 12 H, H4, H5, H7, H8a,
H8, CH2CH2O, CH2), 2.37 (dt, 1
H, J = 13.7,
3.9 Hz, CH2, H4), 2.65 [m, 5 H, CH, H9, C(=O)CH2CH2C(=O)],
3.94 (m, 1 H, OCH), 4.26 (m, 3 H, OCH2, CHO), 4.86 (s,
2 H, CH2=C, HCOO), 4.99 (s, 1 H, CH2=C),
5.42 (s, 1 H, CH, H12), 5.79 (d, 1 H, J = 9.9
Hz, H10). ¹³C NMR (75 MHz, CDCl3): δ = 12.0
(C9-Me), 19.7 (CH3), 20.2 (C6-Me), 22.0 (C5), 22.8 (CH3CO4),
24.6 (CH2CH2O), 25.9 (C3-Me), 28.9 [C(=O)CH2CH2],
29.0 [C(=O)CH2CH2],
30.9 (C8), 31.8 (C9), 33.7 (CH2), 34.1 (C7), 36.2 (C4),
37.3 (C6), 45.2 (C8a), 51.5 (C5a), 61.0 (OCH2CH2),
61.1 (CHO), 65.5/65.6 (OCHCH2), 80.1 (C12a),
82.9 (CHOO), 91.5 (C12), 92.2 (C10), 104.5 (C3), 113.3 (CH2=C),
114.2 (OCOO), 137.6 (CH2=C), 171.1 (C=O),
172.0 (C=O). IR (film): ν = 2959 (s),
2860 (m), 1737 (s), 1646 (w), 1445 (w), 1377 (m), 1259 (s), 1161
(m), 1098 (s), 1016 (s), 876 (m), 799 (s) cm-¹.
ESI-MS: (C30H44O12):
m/z = 619.22
g/mol [M + Na]+.