Abstract
The enantioselective total synthesis of the potent HMG-CoA reductase
inhibitors FR901512 (1 ) and FR901516 (2 ) is reviewed. FR901512 was prepared in
15 steps from commercially available compound via 2 in
16.3% overall yield (89% average yield). This
study validated the applicability and reliability of the catalytic
asymmetric Nozaki-Hiyama reactions that were developed
by us. These reactions enabled the concise, efficient, and protecting-group-free
enantioselective total syntheses of these new statins.
Key words
asymmetric catalysis - enantioselective synthesis - Nozaki-Hiyama reaction - structure elucidation - total synthesis
References
1a
Hatori H.
Sato B.
Sato I.
Shibata T.
Tsurumi Y.
Sakamoto K.
Takase S.
Ueda H.
Hino M.
Fujii T.
J. Antibiot.
2004,
57:
264
1b
Hatori H.
Sato B.
Sato I.
Shibata T.
Ueda H.
Hino M.
Fujii T.
J. Antibiot.
2004,
57:
390
2a
Endo A.
J. Lipid Res.
1992,
33:
1569
2b
Tobert JA.
Nat. Rev. Drug Discovery
2003,
2:
517
2c
Statins:
The HMG CoA Reductase Inhibitors in Perspective
2nd
ed.:
Gaw A.
Packard CJ.
Shepherd J.
Martin
Dunitz;
London:
2004.
To the best of our knowledge, 1 and 2 are the
first naturally occurring statins found to possess a tetralin core.
Total syntheses of statins incorporating a hexalin core or an octalin core
have been reported. For an early review, see:
3a
Rosen T.
Heathcock CH.
Tetrahedron
1986,
42:
4909
For a recent total synthesis of (+)-dihydrocompactin, see:
3b
Sammakia T.
Johns DM.
Kim G.
Berliner MA.
J. Am. Chem. Soc.
2005,
127:
6504
4
Inoue M.
Nakada M.
J. Am. Chem. Soc.
2007,
129:
4164
5a
Inoue M.
Suzuki T.
Nakada M.
J. Am. Chem. Soc.
2003,
125:
1140
5b
Suzuki T.
Kinoshita A.
Kawada H.
Nakada M.
Synlett
2003,
570
5c
Inoue M.
Nakada M.
Org. Lett.
2004,
6:
2977
5d
Inoue M.
Nakada M.
Angew. Chem. Int. Ed.
2006,
45:
252
5e
Inoue M.
Nakada M.
Heterocycles
2007,
72:
133
5f
Inoue M.
Suzuki T.
Kinoshita A.
Nakada M.
Chem. Rec.
2008,
8:
169
6a
Vollhardt KPC.
Angew.
Chem., Int. Ed. Engl.
1984,
23:
539
See also:
6b
Lautens M.
Klute W.
Tam W.
Chem.
Rev.
1996,
96:
49
6c
Saito S.
Yamamoto Y.
Chem. Rev.
2000,
100:
2901
7
Yamamoto Y.
Nagata A.
Itoh K.
Tetrahedron
Lett.
1999,
40:
5035
8
Takeuchi R.
Tanaka S.
Nakaya Y.
Tetrahedron
Lett.
2001,
42:
2991
9a
Sato Y.
Ohashi K.
Mori M.
Tetrahedron Lett.
1999,
40:
5231
9b
Sato Y.
Tamura T.
Mori M.
Angew.
Chem. Int. Ed.
2004,
43:
2436
10
Trnka TM.
Grubbs RH.
Acc. Chem. Res.
2001,
34:
18
11
Jolad SD.
Rajagopal S.
Org. Synth., Coll. Vol. V
1973,
139
12
Wu X.
Nilsson P.
Larhed M.
J. Org. Chem.
2005,
70:
346
13 The use of ent -12 afforded ent -34 accordingly.
14
Crabtree RH.
Morris GE.
J. Organomet. Chem.
1977,
135:
395
15a
Katsuura K.
Snieckus V.
Can.
J. Chem.
1987,
65:
124
15b
Loh TP.
Hu QY.
Org.
Lett.
2001,
3:
279
16 CCDC 647745 contains the supplementary
crystallographic data (excluding structure factors) for this paper.
These data can be obtained free of charge from The Cambridge Crystallographic
Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
17
Nicolaou KC.
Daines RA.
Uenishi J.
Li WS.
Papahatjis DP.
Chakraborty TK.
J.
Am. Chem. Soc.
1988,
110:
4672
18a
Nagata W.
Hayase Y.
J.
Chem. Soc. C
1969,
460
18b
Friese A.
Hell-Momeni K.
Zündorf I.
Winckler T.
Dingermann T.
Dannhardt G.
J. Med. Chem.
2002,
45:
1535
19
Grubbs RH.
Chang S.
Tetrahedron
1998,
54:
4413
20 For the precedent synthesis of the β-hydroxy-δ-lactone moiety,
see: Ghosh AK.
Lei H.
J.
Org. Chem.
2000,
65:
4779
21
Miyashita M.
Suzuki T.
Hoshino M.
Yoshikoshi A.
Tetrahedron
1997,
53:
12469
22 The specific rotation of 2 {[α]D
²5 -8.4
(c 0.35, MeOH)} differed significantly
from the reported value {Lit.¹a [α]D
²³ -16
(c 0.40, MeOH)}. However, we
soon found out that this difference was due to the methanolysis
of 2 during the measurement of the specific
rotation. That is, δ-lactone 2 was
converted into the methyl ester of 1 by
its reaction with MeOH, which was used as the solvent.