References and Notes
1a
Hill DJ.
Mio MJ.
Prince RB.
Hughes TS.
Moore JS.
Chem.
Rev.
2001,
101:
3893
1b
Venkatraman J.
Shankaramma SC.
Balaram P.
Chem.
Rev.
2001,
101:
3131
1c
Loughlin WA.
Tyndall JDA.
Glenn MP.
Fairlie DP.
Chem. Rev.
2004,
104:
6085
1d
Hughes
RM.
Waters ML.
Curr.
Opin. Struct. Biol.
2006,
16:
514
2
Stefanelli S.
Cavaletti L.
Sarubbi E.
Ragg E.
Colombo L.
Selva E.
J. Antibiot.
1995,
48:
332
3a
Zhao X.
Chang Y.-L.
Fowler FW.
Lauher JW.
J. Am. Chem. Soc.
1990,
112:
6627
3b
Cbang Y.-L.
West M.-A.
Fowler FW.
Lauher JW.
J. Am. Chem. Soc.
1993,
115:
5991
3c
Zhang X.
Rodrigues J.
Evans L.
Hinkle B.
Ballantyne L.
Pena M.
J. Org. Chem.
1997,
62:
6420
3d
Page P.
Bradley M.
Walters I.
Teague S.
J. Org. Chem.
1999,
64:
794
3e
Dales NA.
Bohacek RS.
Satyshur KA.
Rich DH.
Org.
Lett.
2001,
3:
2313
3f
Moriuchi T.
Tamura T.
Hirao T.
J.
Am. Chem. Soc.
2002,
124:
9356
3g
Slater MJ.
Amphlett EM.
Andrews DM.
Bamborough P.
Carey SJ.
Johnson
MR.
Jones PS.
Mills G.
Parry NR.
Somers D.
Stewart AJ.
Skarzynski T.
Org. Lett.
2003,
5:
4627
3h
Walther T.
Arndt H.-D.
Waldmann H.
Org.
Lett.
2008,
10:
3199
4a
Rochon FD.
Kong PC.
Melanson R.
Inorg. Chem.
1990,
29:
2708
4b
Etter MC.
Reutzel SM.
J.
Am. Chem. Soc.
1991,
113:
2586
4c
Reutzel SM.
Etter MC.
J.
Phys. Org. Chem.
1992,
5:
44
4d
Nguyen MT.
Leroux N.
Zeegers-Huyskens T.
J. Chem. Soc., Faraday Trans.
1997,
93:
33
5a
Maruyama HB.
Suhara Y.
Suzuki-Watanabe J.
Maeshima Y.
Shimizu N.
Ogura-Hamada M.
Fujimoto H.
Takano K.
J.
Antibiot.
1975,
28:
636
5b
Suhara Y.
Maruyama HB.
Kotoh Y.
Miyasaka Y.
Yokose K.
Shirai H.
Takano K.
J.
Antibiot.
1975,
28:
648
6
Avidsoann D.
Ovro H.
J. Am. Chem. Soc.
1957,
80:
376
7
Dai J.
Day CS.
Noftle RE.
Tetrahedron
2003,
59:
9389
8
Li X.
Zhan C.
Wang Y.
Yao J.
Chem.
Commun.
2008,
2444
9
Nicolaou KC.
Mathison CJN.
Angew.
Chem. Int. Ed.
2005,
44:
5992
10
Evans DA.
Nagorny P.
Xu R.
Org.
Lett.
2006,
8:
5669
11
Wang L.
Fu H.
Jiang Y.
Zhao Y.
Chem. Eur. J.
2008,
14:
10722
12
Pistia-Brueggeman G.
Hollingsworth RI.
Carbohydr. Res.
2003,
338:
455
13
A Typical Procedure
to Synthesize the Imide-dipeptides
The amide (1.1
mmol) of an N-Boc-l-amino
acid was dissolved in distilled THF (10 mL). Then, n-BuLi
(1.1 equiv, 1.5 mM in hexane) was added at -76 ˚C.
One hour later, the reaction mixture was injected into 4-nitrophenyl N-Boc-l-amino
acid ester (1.0 mmol) in distilled THF (10 mL) and stirred overnight
at r.t. The mixture was then refluxed for another 3 h. After removal
of solvents, the residue was applied to chromatography to yield
desired imide-dipeptides as a white solid.
Imide-dipeptide
(1a)
After removal of solvents, the residue was applied
to chromatography by using PE-EtOAc (4:1) as eluents to yield 1a as a white solid (200 mg, 0.56 mmol,
56%, R
f
= 0.2). ¹H
NMR (400 MHz, CDCl3, 16.7 mM): δ = 9.21
(s, 1 H, imide NH), 5.02 (d, 2 H, carbamate NH, ³
J = 6.7 Hz), 4.57-4.52
(m, 2 H, α-proton, ³
J
HN
α= 8.0
Hz), 1.45 (s, 18 H, Boc H), 1.27 (t, 6 H, β-H of Ala, ³
J = 6.8 Hz) ppm. ¹³C
NMR (100 MHz, CDCl3): δ = 171.9, 154.5,
98.6, 79.6, 27.2, 16.5 ppm. ESI-MS: m/z = 359,
382 [+ Na+].
Imide-dipeptide (1b)
After removal
of solvents, the residue was applied to chromatography by using
PE-EtOAc (3:1) as eluents to yield 1b as
a white solid (300 mg, 0.68 mmol, 68%, R
f
= 0.2). ¹H
NMR (400 MHz, CDCl3, 10 mM): δ = 9.02
(s, 1 H, imide NH), 4.89 (d, 2 H, carbamate NH, ³
J = 7.7 Hz), 4.57 (br s, 2 H, α-protons),
1.74-1.60 (m, 4 H, β-H of Leu, ³
J = 5-7 Hz), 1.47-1.40
(m, 2 H, γ-H of Leu, ³
J = 4.8
Hz), 1.45 (s, 18 H, Boc H), 0.98-0.94 (q, 12 H, δ-H
of Leu, ³
J = 6.5,
5.2 Hz) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 173.3,
156.0, 80.6, 54.0, 40.7, 28.4, 24.9, 23.3, 21.5 ppm. ESI-MS: m/z = 443, 466 [+ Na+].
Imide-dipeptide (1c)
After removal
of solvents, the residue was applied to chromatography by using
PE-EtOAc (5:1) as eluents to yield 1c as
a white solid (290 mg, 0.65 mmol, 65%, R
f
= 0.2). ¹H
NMR (400 MHz, CDCl3): δ = 9.13 (s,
1 H, imide NH), 7.19-7.16 (m, 6 H, phenyl H, ³
J = 6.0 Hz), 7.01-7.00
(d, 4 H, phenyl H, ³
J = 6.4
Hz), 4.94 (d, 2 H, carbamate NH, ³
J = 8.0 Hz), 4.57 (q, 2 H, α-protons, ³
J = 8.2 Hz), 3.01 (d, 4 H, BnCH2, ³
J = 6.0 Hz), 1.45 (s, 18 H,
Boc H) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 174.0,
156.0, 139.5, 128.7, 127.6, 126.2, 80.6, 54.5, 37.8, 28.4 ppm. ESI-MS: m/z = 511, 534 [+ Na+].
Imide-dipeptide (1d)
After removal
of solvents, the residue was applied to chromatography by using
PE-EtOAc (3:1) as eluents to yield 1d as
a white solid (400 mg, 0.54 mmol, 54%, R
f
= 0.2). ¹H
NMR (400 MHz, CDCl3): δ = 8.96 (s,
1 H, imide NH), 7.35-7.26 (m, 10 H, phenyl H, ³
J = 6.0 Hz), 5.15 (s, 2 H, Cbz NH),
5.06 (s, 4 H, BnCH2), 4.95 (s, 2 H, carbamate NH), 4.30
(m, 2 H, α-protons, ³
J = 8.0
Hz), 3.11 (m, 4 H, CH2,
³
J = 6.0 Hz), 1.79 (br s, 2 H,
CH2), 1.65 (m, 2 H, CH2, ³
J = 7.9 Hz), 1.47-1.32
(m, 8 H, CH2, ³
J = 7.4
Hz), 1.45 (s, 18 H, Boc H) ppm. ¹³C
NMR (100 MHz, CDCl3): δ = 173.9, 156.0, 141.1,
128.6, 128.2, 80.6, 66.6, 53.4, 41.0, 32.0, 29.4, 28.4, 22.5 ppm.
ESI-MS: m/z = 741,
764 [+ Na+].
Imide-dipeptide (1e)
After removal
of solvents, the residue was applied to chromatography by using
PE-EtOAc (4:1) as eluents to yield 1e as
a white solid (430 mg, 0.68 mmol, 68%, R
f
= 0.2). ¹H
NMR (400 MHz, CDCl3, 10 mM): δ = 9.09
(s, 1 H, imide NH), 7.29-7.13 (m, 10 H, phenyl H), 5.22
(s, 1 H, Cbz NH), 5.06 (m, 1 H, carbamate NH, overlapping, ³
J = 7.2 Hz), 5.03 (s, 2 H, BnCH2),
4.91 (s, 1 H, carbamate NH), 4.73 and 4.67 (br s, 1 H, α-protons),
4.46 (br s, 1 H, α-protons), 3.11 (s, 2 H, CH2),
3.11 (br s, 1 H, BnCH2, overlapping), 2.85 (br s, 1 H,
BnCH2), 1.74 (br s, 2 H, CH2), 1.47 (m, 4
H, CH2, ³
J = 6.4 Hz),
1.29 and 1.20 (s, 18 H, Boc H) ppm.¹³C
NMR (100 MHz, CDCl3): δ = 172.7, 171.9,
156.7, 155.9, 155.4, 136.5, 135.8, 129.4, 128.6, 128.5, 128.1, 127.1,
80.4, 66.7, 56.3, 55.1, 40.1, 37.5, 31.0, 29.2, 28.3, 22.4 ppm.
ESI-MS: m/z = 626,
749 [+ Na+].
Imide-dipeptide (1f)
After removal
of solvents, the residue was applied to chromatography by using
PE-EtOAc (5:1) as eluents to yield 1f as
a white solid (290 mg and 310 mg, 0.56 mmol and 0.60 mmol, 56% and
60%, R
f
= 0.2). ¹H
NMR (400 MHz, CDCl3): δ = 8.89-8.82
(d, 1 H, imide NH), 7.35-7.17 (m, 10 H, phenyl H), 5.29
(s, 1 H, Cbz NH), 5.05 (s, 2 H, BnCH2), 5.00 (d, 1 H,
carbamate NH, ³
J = 8.4
Hz), 5.00 (m, 1 H, α-protons, overlapping), 4.57 (m, 1
H, α-protons, ³
J = 8.2
Hz), 3.11 (m, 1 H, BnCH2), 2.85 (m, 1 H, BnCH2),
1.74-1.60 (m, 2 H, β-H of Leu, ³
J = 5-7 Hz), 1.47-1.40
(m, 1 H, γ-H of Leu, ³
J = 4.8
Hz), 1.45 (s, 9 H, Boc H), 0.98-0.88 (q, 6 H,
δ-H
of Leu, ³
J
= 6.5, 5.2 Hz) ppm. ¹³C
NMR (100 MHz, CDCl3): δ = 174.0, 173.3,
156.2, 156.0, 141.1, 140.3, 129.5, 128.7, 128.6, 128.5, 128.2, 127.1,
80.6, 66.0, 54.9, 54.0, 40.7, 37.8, 28.4, 24.9, 23.3, 22.2 ppm.
ESI-MS: m/z = 511, 534 [+ Na+].
14
Typical Procedure
for the Synthesis of 4-Nitrophenyl
N
-Boc-
l
-alanine Ester and
N
-Boc-
l
-alanine Amide
N
-Boc-
l
-alanine Acid
l-Alanine (4.5g, 50 mmol) and KOH (3.8
g, 55 mmol) were dissolved in a mixture of H2O (200 mL)
and THF (20 mL). Then, di-tert-butyl-dicarbonate
(13.0 g, 55 mmol) was added. The resultant solution was allowed
to react at 50 ˚C for 2-3 h and at r.t. overnight.
Then, 1 M HCl (55 mL) was added dropwise to adjust pH value of the
solution to about 5. The solution was extracted with EtOAc (3 × 200
mL) and CH2Cl2 (3 × 200 mL), respectively.
The organic phases were mixed and dried with anhyd Na2SO4.
The reaction afforded N-Boc-l-alanine acid as an oil-like solid (9
g, 47 mmol, 95%). ¹H NMR (400 MHz,
CDCl3): δ = 10.66 (br s, 1 H, acid H),
5.08 (s, 1 H, carbamate H), 4.35 (s, 1 H, α-proton), 1.53 (d,
3 H, CH3, ³
J = 7.6
Hz), 1.45 (s, 9 H, Boc H) ppm. ESI-MS: 188 [- H+],
189, 211 [- H+ and + Na+],
227 [- H+ and
+ K+].
4-Nitrophenyl
N
-Boc-
l
-alanine Ester
N-Boc-l-alanine acid (1.9 g, 10 mmol), 4-nitrophenol
(1.7 g, 12 mmol), and DCC (2.8 g, 12 mmol) were mixed with CH2Cl2 (100
mL). After stirred overnight at r.t., the precipitate was filtered
out, and the solvents of the filtration were removed. The resultant
residue was applied to flash chromatography with PE-CH2Cl2-EtOAc
(10:2:1) as eluents to afford 4-nitrophenyl N-Boc-l-alanine ester as a light yellow solid
(2.6 g, 8.4 mmol, 85%, R
f
= 0.2). ¹H
NMR (400 MHz, CDCl3): δ = 8.30 (d,
2 H, phenyl H, ³
J = 9.0
Hz), 7.32 (d, 2 H, phenyl H, ³
J = 9.0
Hz), 5.11 (s, 1 H, carbamate H), 4.54 (t, 1 H, α-proton, ³
J = 7.1, 6.5 Hz), 1.58 (d, 3
H, CH3, ³
J = 7.4
Hz), 1.47 (s, 9 H, Boc H). ¹³C NMR
(100 MHz, CDCl3): δ = 171.4, 155.3,
155.2, 145.6, 125.4, 122.4, 80.5, 49.7, 28.4, 18.1. ESI-MS: m/z = 333 [+ Na+].
N
-
tert
-Butoxycarbonyl-
l
-alanine Amide
4-Nitrophenyl N-Boc-l-alanine
ester (2.40 g, 7.7 mmol) was dissolved in MeCN (30 mL) and bubbled
by NH3 flow for
4-5 h. After removal
of MeCN, the reacted residue was purified with chromatography using
PE-CH2Cl2-EtOAc (1:1:1)
as eluents to afford N-tert-butoxycarbonyl-l-alanine amide as white solid (1.4 g,
7.4 mmol, 96%, R
f
= 0.1). ¹H NMR
(400 MHz, CDCl3): δ = 6.04 (s, 1 H,
amide H), 5.32 (s, 1 H, amide H), 4.89 (s, 1 H, carbamate H), 4.10
(s, 1 H, α-proton), 1.36 (s, 9 H, Boc H), 1.30 (d, 3 H,
CH3, ³
J = 7.2) ppm. ¹³C
NMR (100 MHz, CDCl3): δ = 171.7, 155.5,
80.3, 49.9, 28.3, 18.2 ppm. ESI-MS: m/z = 211 [+ Na+],
227 [+ K+].