Subscribe to RSS
DOI: 10.1055/s-0029-1217170
Click Chemistry Approach for the Synthesis of Water-Soluble Glycodendrimer with Triazole as Building Unit
Publication History
Publication Date:
13 May 2009 (online)
Abstract
A new family of chiral glycodendrimers scaffolds containing di-, tetra- and octavalent glucose residues as peripheral unit and with 1,2,3-triazole as building unit has been synthesized through Cu(I)-catalyzed click chemistry by convergent approach.
Key words
click chemistry - glycodendrimers - chiral (S)-BINOL - alkynes - azide - 1,2,3-triazole
-
1a
Adronov A.Fréchet JMJ. Chem. Commun. 2000, 1701 -
1b
Gilat SL.Adronov A.Fréchet JMJ. Angew. Chem. Int. Ed. 1999, 38: 1422 -
2a
Kleij AW.Gossage RA.Gebbink RJMK.Brinkmann N.Reijerse EJ.Kragl U.Lutz M.Speck AL.van Koten G. J. Am. Chem. Soc. 2000, 122: 12112 -
2b
Mager M.Becke S.Windisch H.Denninger U. Angew. Chem. Int. Ed. 2001, 40: 1898 - 3
Kleiji AW.Gossage RA.Gebbink RJMK.Brinkmann N.Reijerse E.Vögtle F.Vicinelli V.Ceroni P.Maestri M.Balzani V. Angew. Chem. Int. Ed. 2002, 41: 3595 -
4a
Rajakumar P.Ganesan K.Jayavelu S.Murugesan K. Synth. Lett. 2005, 7: 1121 -
4b
Gillies ER.Fréchet JMJ. J. Am. Chem. Soc. 2002, 124: 14137 -
4c
Patri AK.Majoros IJ.Baker JR. Curr. Opin. Chem. Biol. 2002, 6: 466 -
4d
Padilla De Jesus OL.Ihre HR.Gagne L.Fréchet JMJ.Szoka FC. Bioconjugate Chem. 2002, 13: 453 -
5a
Wang Q.Chan TR.Hilgraf R.Fokin VV.Sharpless KB.Finn MG. J. Am. Chem. Soc. 2003, 125: 3192 -
5b
Burley GA.Gierlich J.Mofid MR.Nir H.Tal S.Eichen Y.Carell T. J. Am. Chem. Soc. 2006, 128: 1398 -
6a
Kukowska-Latallo JF.Candido KA.Cao Z.Nigavekar SS.Majoros IJ.Thomas TP.Balogh LP.Khan MK.Baker JR. Cancer Res. 2005, 65: 5317 -
6b
Fuchs S.Otto H.Jehle S.Henklein P.Schlüter AD. Chem. Commun. 2005, 1830 -
6c
Majoros IJ.Myc A.Thomas T.Mehta CB.Baker JR. Biomacromolecules 2006, 7: 572 -
7a
Cloninger MJ. Curr. Opin. Chem. Biol. 2002, 6: 742 -
7b
Boas U.Heegaard PMH. Chem. Soc. Rev. 2004, 33: 43 -
7c
Shaunak S.Thomas S.Gianasi E.Godwin A.Jones E.Teo I.Mireskandari K.Luthert P.Duncan R.Patterson S.Khaw P.Brocchini S. Nat. Biotechnol. 2004, 22: 977 -
7d
McCarthy TD.Karellas P.Henderson SA.Giannis M.O’Keefe DF.Heery G.Paull JRA.Matthews BR.Holan G. Mol. Pharm. 2005, 2: 312 -
7e
Lee CC.MacKay JA.Fréchet JMJ.Szoka FC. Nat. Biotechnol. 2005, 23: 1517 -
8a
Zhang Q.Ning Z.Yan Y.Qian S.Tian H. Macromol. Rapid Commun. 2008, 29: 193 -
8b
Zhang Q.Ning Z.Tian H. Dyes Pigments 2009, 81: 80 - 9
Lee YC.Lee RT. Acc. Chem. Res. 1995, 28: 321 - 10
Tornoe CM.Christensen C.Meldal MJ. J. Org. Chem. 2002, 67: 3057 - 11
Rostovtsev VV.Green LG.Fokin VV.Sharpless KB. Angew. Chem. Int. Ed. 2002, 41: 2596 - 12
Deguise I.Lagnoux D.Roy R. New J. Chem. 2007, 31: 1321 - 13
Chabre YM.Contino-Pepin C.Placide V.Shiao TC.Roy R. J. Org. Chem. 2008, 73: 5602 - 14
Rajakumar P.Ganesan K. Tetrahedron: Asymmetry 2005, 16: 2295 -
15a
Maikoch M.Schleicher K.Drockenmuller E.Hawker CJ.Russell T.Wu P.Forkin VV. Macromolecules 2005, 38: 3663 -
15b
Fernandez-Megia E.Correa J.Riguera R. Biomacromolecules 2006, 7: 3104 -
16a
Mourer M.Hapiot F.Tilloy S.Monflier E.Menuel S. Eur. J. Org. Chem. 2008, 5723 -
16b
Coogan MP.Robert L.Jenkins A.Nutz E. J. Organomet. Chem. 2004, 689: 694
References and Notes
General Procedure
for the Cu-Catalyzed Huisgen ‘Click Reaction’:
Acetylenic derivative (1.0 mmol) was mixed with acetylated carbohydrate
azide (2.1 mmol, 2.1 equiv) in t-BuOH
and H2O mixture (1:1, 8 mL) solution. Sodium ascorbate
(0.4 mmol, 0.4 equiv) was added as a solid, followed by the addition
of CuSO4 (0.2 mmol, 0.2 equiv). The reaction was stirred
overnight at r.t. The solvent was evaporated under reduced pressure
and the crude product was dissolved in EtOAc (100 mL), washed with
NH4Cl solution (50 mL), brine solution (50 mL) and H2O
(50 mL) and then dried over Na2SO4 and concentrated
on a rotary evaporator. The residue was purified by column chromatog-raphy
(SiO2) with hexane-EtOAc as eluent to give the corresponding
triazole compound.
General Procedure for the Conversion of Dendritic Chlorides to Azides: Dendritic chloride (1.0 mmol) was dissolved in acetone and H2O (4:1, 8 mL). NaN3 (1.5 mmol, 1.5 equiv) was added, and the mixture was heated at 60 ˚C for 3 h. The reaction mixture was cooled to r.t., acetone was evaporated and the reaction mixture was diluted with H2O (100 mL), and extracted with EtOAc (2 × 100 mL). The organic layer was washed with sat. NaCl (50 mL), dried over Na2SO4, and evaporated to give the dendritic azide.
19First-Generation Dendritic Azide 11: white solid; yield: 99%; R f 0.6 (EtOAc-hexane, 1:1); mp 133 ˚C. ¹H NMR (300 MHz, CDCl3): δ = 1.78, 1.96, 2.00 (3 × s, 24 H), 3.92-3.97 (m, 2 H), 4.04-4.11 (m, 2 H), 4.21-4.26 (m, 4 H), 5.13 (s, 4 H), 5.18-5.21 (m, 2 H), 5.32-5.43 (m, 4 H), 5.84 (d, J = 2.7 Hz, 2 H), 6.50 (d, J = 2.1 Hz, 2 H), 6.57 (d, J = 2.1 Hz, 1 H), 7.86 (s, 2 H). ¹³C NMR (75 MHz, CDCl3): δ = 19.1, 19.5, 19.5, 19.6, 53.6, 60.6, 60.9, 66.8, 69.4, 71.7, 74.2, 84.8, 100.6, 106.8, 120.3, 137.0, 143.6, 158.6, 167.9, 168.4, 168.9, 169.5. MS (FAB): m/z = 987 [M+]. Anal. Calcd for C41H49N9O20: C, 49.85; H, 5.00; N, 12.76. Found: C, 49.81; H, 4.96; N, 12.51.
20Second-Generation Dendritic Azide 13: white solid; yield: 99%; R f 0.72 (EtOAc-hexane, 7:3); mp 159 ˚C. ¹H NMR (300 MHz, CDCl3): δ = 1.82, 2.02, 2.05, 2.07 (4 × s, 48 H), 4.02-4.05 (m, 4 H), 4.11-4.17 (m, 4 H), 4.24 (d, J = 4.8 Hz, 2 H), 4.27-4.32 (m, 4 H), 5.14 (s, 8 H), 5.17 (s, 4 H), 5.27 (t, J = 9.6 Hz, 4 H), 5.39-5.50 (m, 12 H), 5.93 (d, J = 8.7 Hz, 4 H), 6.51 (s, 4 H), 6.59 (s, 2 H), 6.60 (s, 1 H), 6.64 (s, 2 H), 7.63 (s, 2 H), 7.96 (s, 4 H). ¹³C NMR (75 MHz, CDCl3): δ = 20.1, 20.5, 20.5, 20.6, 54.0, 54.6, 61.6, 61.8, 62.1, 67.7, 70.4, 72.6, 75.1, 85.8, 101.7, 107.9,107.7, 107.8, 121.6, 123.0, 137.0, 144.2, 144.3, 159.4, 159.7, 168.9, 169.4, 169.9, 170.5. MS (FAB): m/z = 2217 [M+]. Anal. Calcd for C95H109N21O42: C, 51.46; H, 4.95; N, 13.27. Found: C, 51.41; H, 4.90; N, 13.14.
21General Procedure for the De-O-acetylation (Zemplen Reaction): Acetylated dendrimers (1.0 mmol) was dissolved in a mixture of anhyd MeOH-anhyd THF-anhyd CH2Cl2 (16 mL, 6:1:1) and to this mixture was added a solution of sodium methoxide (1 M MeOH) until pH 9-10 was reached. The reaction was stirred at r.t. for 48 h. At the end, H2O was added for entire solubilization of desired compound and the solution was neutralized by addition of ion-exchange resin (Amberlite IR 120 H+) until pH 6-7 was attained. The solution was filtered and the solvent was removed in vacuo with rotary evaporator. The residue was then lyophilized to yield the fully deprotected glycodenrimer in a ca. 99% yield.
22
Glycodendrimer
2: white solid; yield: 95%; [α]D
²5 +44.5
(c = 1, DMSO). IR (KBr): 3404,
1372, 1230, 1042, 826 cm-¹. ¹H
NMR (300 MHz, CDCl3): δ = 3.21 (d, J = 8.4 Hz, 4 H), 3.55-3.66
(m, 8 H), 5.18 (q, J = 3.6 Hz,
4 H), 5.43 (d, J = 9.0 Hz, 2
H), 6.88 (d, J = 8.4 Hz, 2 H),
7.22 (t, J = 7.4 Hz, 2 H), 7.33
(t, J = 7.5 Hz, 2 H), 7.75-7.78
(m, 4 H), 7.94 (d, J = 9.0 Hz,
2 H), 8.06 (d, J = 9.0 Hz, 2
H). ¹³C NMR (75 MHz, CDCl3): δ = 60.4,
62.2, 72.0, 76.4, 79.4, 87.2, 115.8, 119.3, 123.0, 123.9, 124.4,
126.5, 128.9, 129.5, 133.2, 143.2, 143.2, 153.4. MS (FAB): m/z = 772 [M+].
Anal. Calcd for C38H40N6O12:
C, 59.06; H, 5.22; N, 10.88. Found: C, 59.03; H, 5.20; N, 10.87.
Glycodendrimer
4: white solid; yield: 92%; [α]D
²5 +15.5
(c = 1, DMSO). IR (KBr): 3426,
1595, 1412, 1046, 834 cm-¹. ¹H
NMR (300 MHz, CDCl3): δ = 3.00 (s,
8 H), 3.43-3.56 (m, 8 H), 4.85-4.94 (m, 12 H),
5.14 (s, 8 H), 5.31 (d, J = 9.0
Hz, 4 H), 5.54 (s, 4 H), 6.26 (s, 4 H), 6.53 (s, 2 H), 6.60 (d, J = 8.4 Hz, 2 H), 7.90 (t, J = 7.5 Hz, 2 H), 7.04 (t, J = 7.5 Hz, 2 H), 7.34 (s, 2
H), 7.45 (d, J = 9.0 Hz, 2 H),
7.65 (d, J = 9.0 Hz, 2 H), 7.76
(d, J = 9.0 Hz, 2 H), 8.20 (s,
4 H). ¹³C NMR (75 MHz, CDCl3): δ = 52.7,
60.5, 60.8, 62.3, 69.2, 72.0, 76.6, 79.4, 87.4, 100.8, 107.1, 115.8,
119.3, 123.8, 124.0, 124.3, 126.3, 128.0, 128.9, 129.4, 133.1, 137.7,
142.4, 143.5, 153.2, 159.3. MS (MALDI-TOF): m/z = 1665 [M+]. Anal.
Calcd for C76H84N18O26:
C, 54.80; H, 5.08; N, 15.14. Found: C, 54.79; H, 5.08; N, 15.11.
Glycodendrimer
6: white solid; yield: 92%; [α]D
²5 +2.2
(c = 1, DMSO). IR (KBr): 3390,
1598, 1461, 1384, 1168, 1047, 828 cm-¹. ¹H
NMR (300 MHz, CDCl3): δ = 3.24 (s,
16 H), 3.68-3.82 (m, 16 H), 5.07 (s, 8 H), 5.11 (s, 16
H), 5.18 (d, J = 4.8 Hz, 8 H),
5.32 (d, J = 3.6 Hz, 12 H),
5.44 (d, J = 9.0 Hz, 8 H), 5.54
(s, 8 H), 5.57 (s, 4 H), 6.45 (s, 4 H), 6.62 (s, 8 H), 6.71 (s,
2 H), 6.77 (s, 4 H), 6.81 (d, J = 8.4
Hz, 2 H), 7.10 (t, J = 7.8 Hz,
2 H), 7.24 (t, J = 6.6 Hz, 2
H), 7.52 (s, 2 H), 7.66 (d, J = 8.7
Hz, 2 H), 7.83 (d, J = 7.5 Hz,
2 H), 7.96 (d, J = 8.4 Hz, 2
H), 8.29 (s, 4 H), 8.32 (s, 8 H). ¹³C
NMR (75 MHz, CDCl3): δ = 52.8, 60.5,
60.8, 62.2, 69.2, 72.0, 76.6, 79.4, 87.3, 100.9, 107.1, 115.7, 119.3,
123.8, 124.0, 124.3, 124.8, 125.7, 126.3, 127.8, 127.9, 128.8, 129.2, 129.3,
133.0, 137.6, 138.0, 142.4, 142.7, 143.5, 153.2, 159.1, 159.2. MS
(MALDI-TOF): m/z = 3451 [M+].
Anal. Calcd for C152H172N42O54:
C, 52.90; H, 5.02; N, 17.05. Found: C, 52.89; H, 5.02; N, 17.02.