Subscribe to RSS
DOI: 10.1055/s-0029-1217185
Homodiphenylprolinol Methyl Ether as a Highly Efficient Catalyst for Asymmetric Michael Addition of Ketones to Nitroalkenes
Publication History
Publication Date:
18 May 2009 (online)
Abstract
A series of novel homoprolinol analogues and ethers were developed and evaluated in direct Michael addition of ketones to nitroalkenes. Excellent yields (up to 99%), diastereoselectivities (up to 98% dr) and enantioselectivities (up to 98% ee) were achieved in the presence of 5 mol% homodiphenylprolinol methyl ether as catalyst and 5 mol% o-methylbenzoic acid as the additive at room temperature.
Key words
homodiphenylprolinol methyl ether - organocatalyst - asymmetric Michael addition - ketone - nitroolefin
- Supporting Information for this article is available online:
- Supporting Information
- 1
Perlmutter P. Conjugate Addition Reactions in Organic Synthesis Pergamon; Oxford: 1992. - For reviews, see:
-
2a
Tomioka K.Nagaoka Y.Yamaguchi M. In Comprehensive Asymmetric CatalysisJacobsen EN.Pfaltz A.Yamamoto H. Springer; New York: 1999. -
2b
Berner OM.Tedeschi L.Enders D. Eur. J. Org. Chem. 2002, 1877 -
2c
Krause N.Hoffmann-Röder A. Synthesis 2001, 171 -
2d
Christoffers J.Koripelly G.Rosiak A.Rössle M. Synthesis 2007, 1279 -
3a
Dalko PI.Moisan L. Angew. Chem. Int. Ed. 2004, 43: 5138 -
3b
Seayad J.List B. Org. Biomol. Chem. 2005, 3: 719 -
3c
Berkessel A.Groger H. Asymmetric Organocatalysis: From Biomimetic Concepts to Applications in Asymmetric Synthesis Wiley-VCH; Weinheim: 2005. -
3d
Tsogoeva SB. Eur. J. Org. Chem. 2007, 11: 1701 -
3e
Connon SJ. Chem. Commun. 2008, 2499 -
3f
Vicario JL.Badía D.Carrillo L. Synthesis 2007, 2065 -
3g
Almaşi D.Alonso DA.Nájera C. Tetrahedron: Asymmetry 2007, 18: 299 -
3h
Pellissier H. Tetrahedron 2007, 63: 9267 - 4
Sakthivel K.Notz W.Bui T.Barbas CF. J. Am. Chem. Soc. 2001, 123: 5260 - 5
List B.Pojarliev P.Martin HJ. Org. Lett. 2001, 3: 2423 - 6
Enders D.Seki A. Synlett 2002, 26 -
7a
McCooey SH.Connon SJ. Org. Lett. 2007, 9: 599 -
7b
Liu K.Cui HF.Nie J.Dong KY.Li XJ.Ma JA. Org. Lett. 2007, 9: 923 -
7c
Huang HB.Jacobsen EN. J. Am. Chem. Soc. 2006, 128: 7170 -
7d
Xu YM.Córdova A. Chem. Commun. 2006, 460 -
7e
Xu YM.Zou WB.Sundén H.Ibrahem I.Córdova A. Adv. Synth. Catal. 2006, 348: 418 -
7f
Luo SZ.Li JY.Zhang L.Xu H.Cheng JP. Chem. Eur. J. 2008, 14: 1273 -
7g
Mandal T.Zhao CG. Angew. Chem. Int. Ed. 2008, 47: 7714 -
7h
Xue F.Zhang SL.Duan WH.Wang W. Adv. Synth. Catal. 2008, 350: 2194 -
8a
Zu LS.Wang J.Li H.Wang W. Org. Lett. 2006, 8: 3077 -
8b
Wang J.Li H.Lou BS.Zu LS.Guo H.Wang W. Chem. Eur. J. 2006, 12: 4321 -
8c
Ishii T.Fujioka S.Sekiguchi Y.Kotsuki H. J. Am. Chem. Soc. 2004, 126: 9558 -
8d
Vishnumaya Singh VK. Org. Lett. 2007, 9: 1117 -
8e
Andrey O.Alexakis A.Bernardinelli G. Org. Lett. 2003, 5: 2559 -
8f
Alexakis A.Andrey O. Org. Lett. 2002, 4: 3611 -
8g
Mase N.Watanabe K.Yoda H.Takabe K.Tanaka F.Barbas CF. J. Am. Chem. Soc. 2006, 128: 4966 -
8h
Pansare SV.Pandya K. J. Am. Chem. Soc. 2006, 128: 9624 -
8i
Cao YJ.Lai YY.Wang X.Li YJ.Xiao WJ. Tetrahedron Lett. 2007, 48: 21 -
8j
Cao CL.Ye MC.Sun XL.Tang Y. Org. Lett. 2006, 8: 2901 -
8k
Tsogoeva SB.Wei SW. Chem. Commun. 2006, 1451 -
8l
Luo SZ.Xu H.Mi XL.Li JY.Zheng XX.Cheng JP. J. Org. Chem. 2006, 71: 9244 -
8m
Yan ZY.Niu YN.Wei HL.Wu LY.Zhao YB.Liang YM. Tetrahedron: Asymmetry 2006, 17: 3288 -
8n
Mitchell CET.Cobb AJA.Ley SV. Synlett 2005, 611 -
8o
Betancort JM.Sakthivel K.Thayumanavan R.Tanaka F.Barbas CF. Synthesis 2004, 1509 -
8p
Andrey O.Alexakis A.Tomassini A.Bernardinelli G. Adv. Synth. Catal. 2004, 346: 1147 -
8q
Clarke ML.Fuentes JA. Angew. Chem. Int. Ed. 2007, 46: 930 -
8r
Luo SZ.Mi XL.Song LZ.Xu H.Cheng JP. Angew. Chem. Int. Ed. 2006, 45: 3093 -
8s
Luo SZ.Mi XL.Liu S.Xu H.Cheng JP. Chem. Commun. 2006, 3687 -
8t
Almasi D.Alonso DA.Nájera C. Tetrahedron: Asymmetry 2006, 17: 2064 -
8u
Li PH.Wang L.Wang M.Zhang YC. Eur. J. Org. Chem. 2008, 1157 -
9a
Mandal T.Zhao CG. Tetrahedron Lett. 2007, 48: 5803 -
9b
Hayashi Y.Gotoh H.Hayashi T.Shoji M. Angew. Chem. Int. Ed. 2005, 44: 4212 -
9c
Zhu SL.Yu SY.Ma DW. Angew. Chem. Int. Ed. 2008, 47: 545 -
9d
García-García P.Ladépêhe A.Halder R.List B. Angew. Chem. Int. Ed. 2008, 47: 4719 -
9e
Hayashi Y.Itoh T.Ohkubo M.Ishikawa H. Angew. Chem. Int. Ed. 2008, 47: 4722 -
9f
Marigo M.Fielenbach D.Braunton A.Kjærsgaard A.Jørgensen KA. Angew. Chem. Int. Ed. 2005, 44: 3703 -
9g
Marigo M.Franzén J.Poulsen TB.Zhuang W.Jørgensen KA. J. Am. Chem. Soc. 2005, 127: 6964 -
10a
Zhao GL.Ibrahem I.Sundén H.Córdova A. Adv. Synth. Catal. 2007, 349: 1210 -
10b
Liu FY.Wang SW.Wang N.Peng YG. Synlett 2007, 2415 - 15
Seebach D.Golinski J. Helv. Chim. Acta 1981, 64: 1413
References and Notes
The Synthesis
and Characterization of the Catalyst 3k.
Compound 8a (see Supporting Information; 24.8 g,
62 mmol) was dissolved in MeI (2 mL) and THF (10 mL), NaH (310 mmol)
was added slowly to the stirred mixture over a course of 30 min
at 0 ˚C under N2. The reaction mixture
was then stirred overnight and quenched with H2O. Excess
MeI was removed under reduced pressure in a well-ventilated hood.
The residue was dissolved in EtOAc and partitioned between EtOAc
and H2O. The organic layers were collected, washed with
brine, dried over with MgSO4, filtered, and concentrated
to give colorless oil. The oil was eluted through a SiO2 column
by EtOAc-hexane gave pure 9a with
yield 70%.
The resulting 9a was
dissolved in MeOH (6 mL) and Pd/C (20% in weight)
was added. The mixture was stirred overnight at r.t. under H2 atmosphere
(1.013 bar). Then, the mixture was filtered through Celite and the
solvent evaporated under reduced pressure to afford the crude product,
which was further purified by flash column chromatography on SiO2 (CH2Cl2-MeOH = 90:10)
to afford the title compounds 3k (Scheme
2). White solid, mp 86-87 ˚C, [α]D
²5 +27.0
(c 1.0, CHCl3). ¹H
NMR (300 MHz, CDCl3): δ = 1.17-1.23
(m, 1 H), 1.50-1.71 (m, 3 H), 1.90 (s, 1 H), 2.46-2.52
(dd, J = 14.2,
4.7 Hz, 1 H), 2.56-2.68 (m,
2 H), 2.76-2.82
(m, 1 H), 2.87-2.94 (m, 1 H), 3.06 (s, 3 H), 7.17-7.36
(m, 10 H) ppm. ¹³C NMR (75.5 MHz, CDCl3): δ = 23.8,
32.1, 40.9, 45.7, 50.5, 54.5, 82.3, 126.5, 126.7, 126.8, 127.0,
127.8, 127.9, 145.3, 145.5 ppm. IR (KBr):
ν = 3416,
3363, 3022, 2958, 2826, 1618, 1599, 1491, 1444, 1400, 1189, 1155,
1122, 1065, 916, 849, 752, 698, 621, 594 cm-
¹.
HRMS (TOF): m/z calcd for C19H24NO [M + H]+: 282.1858;
found: 282.1832.
The trimethyl silyl ether showed good catalytic reactivity and slightly decreased diastereoselectivity (up to 97:3) and enantioselectivity (up to 93% ee) compared to 3k. Unfortunately, it was unstable and easily decomposed into alcohol.
13When benzoic acid was used as cocatalyst, the same good results were obtained at r.t. (99% yield, 96% ee and 92% dr after 24 h). But, when the reaction proceeded at 0 ˚C, benzoic acid has shown slightly lower reactivity (58% yield) than o-methylbenzoic acid (63% yield) with the same stereoselectivities (99% ee, 98% dr) after 48 h.
14
Typical Procedure
for the Direct Asymmetric Michael Addition of Ketones to Nitroolefins
To
a stirred solution of catalyst (0.05 equiv) in hexane (0.5 mL) and
ketone (3 equiv) at r.t. was added o-methylbenzoic acid
(0.05 equiv) and, after 5 min, nitroolefin (1 equiv) was added.
The reaction mixture was stirred at r.t. for the appropriate time.
The solvent was evaporated and the residue was chromatography on
SiO2 column (hexane-EtOAc = 10:1)
to afford the desired product. The ee of the product was determined
by chiral HPLC analysis (Daicel Chiralpak AS-H or AD-H) to compare
with their corresponding racemic peaks.