Subscribe to RSS
DOI: 10.1055/s-0029-1217327
Stille Cross-Coupling Reactions Using Vinylcyclopropylstannanes
Publication History
Publication Date:
02 June 2009 (online)

Abstract
The Stille cross-coupling reaction between a vinylcyclopropylstannane and iodobenzene or phenol triflate provides an expedious route to 1,2-phenylvinylcyclopropanes. However, similar coupling reactions using ortho-substituted aromatic substrates also lead to butylaromatic products, resulting from competitive sp³-sp² coupling reactions.
Key words
Stille reaction - cross-coupling - arylations - vinyl cyclopropanes - sp³-sp² coupling
-
1a
Stille JK. Angew. Chem., Int. Ed. Engl. 1986, 25: 508 -
1b
Farina V.Krishnamurthy V.Scott WK. In Organic Reactions Vol. 50: Wiley; New York: 1997. -
1c
Mitchell TN. In Metal-Catalyzed Cross-Coupling Reactionsde Meijere A.Diederich F. Wiley-VCH; Weinheim: 2004. Chapt. 3. - 2 For a Negishi cross-coupling involving
a vinylcyclopropylstannane and a vinyl iodide, see:
Piers E.Jean M.Marrs PS. Tetrahedron Lett. 1987, 43: 5075 - For zirconium-catalysed and Negishi cross-coupling reactions using vinylcyclopropyl halides and vinyl substrates, see:
-
3a
Thomas E.Kasatkin AN.Whitby RJ. Tetrahedron Lett. 2006, 52: 9181 -
3b
Piers E.Coish PDG. Synthesis 2001, 251 - For some Suzuki cross-coupling reactions using cyclopropyl boronic acids, see:
-
4a
Baba D.Yang Y.-J.Uang B.-J.Fuchigami T. J. Fluorine Chem. 2003, 1: 93 -
4b
Rubina M.Rubin M.Gevorgyan V. J. Am. Chem. Soc. 2003, 24: 7198 -
4c
Wallace DJ.Chen C.-Y. Tetrahedron Lett. 2002, 39: 6987 -
4d
Zhou S.-M.Deng M.-Z.Xia L.-J.Tang M.-H. Angew. Chem. Int. Ed. 1998, 20: 2845 - 5
Oda H.Kobayashi T.Kosugi M.Migita T. Tetrahedron 1995, 51: 695 - For some examples, see:
-
8a
Allegretti M.Bertini R.Cesta MC.Bizzarri C.Di Bitondo R.Di Cioccio V.Galliera E.Berdini V.Topai A.Zampella G.Russo V.Di Bello N.Nano G.Nicolini L.Locati M.Fantucci P.Florio S.Colotta F. J. Med. Chem. 2005, 13: 4312 -
8b
Tamayo N.Echavarren AM.Paredes MC.Fariña F.Noheda P. Tetrahedron Lett. 1990, 36: 5189 -
8c
Echavarren AM.Stille JK. J. Am. Chem. Soc. 1987, 18: 5478 - For examples of some competitive alkyl vs aryl couplings involving aryltributylstannane precursors, see:
-
9a
Yasuda N.Yang C.Wells KM.Jensen MS.Hughes DL. Tetrahedron Lett. 1999, 3: 427 -
9b
O’Neill DJ.Shen L.Prouty C.Conway BR.Westover L.Wu JZ.Zhang HC.Maryanoff BE.Murray WV.Demarest KT.Kuo GH. Bioorg. Med. Chem. 2004, 12: 3167 -
9c
Paintner FF.Gorler K.Voelter W. Synlett 2003, 522 -
9d
Ito S.Okujima T.Morita N. J. Chem. Soc., Perkin Trans. 1 2002, 16: 1896 - 10
Ohe K.Yokoi T.Miki K.Nishino F.Uemura S. J. Am. Chem. Soc. 2002, 124: 526
References and Notes
The vinylcyclopropylstannane 3 was obtained as a colourless oil. IR (CHCl3): νmax = 3083, 1631 cm-¹. ¹H NMR (400 MHz, CDCl3): δ = 0.11 (1 H, ddd, J = 10.5, 8.5, 5.5 Hz, CHSnBu3), 0.70-0.76 (2 H, m, CHCH 2CH), 0.81 (6 H, t, J = 8.0 Hz, SnCH2), 0.89 (9 H, t, J = 7.5 Hz, CH2CH 3), 1.25-1.36 (6 H, m, CH3CH 2), 1.36-1.44 (1 H, m, CH2=CHCH), 1.44-1.56 (6 H, m, SnCH2CH 2), 4.80 (1 H, dd, J = 10.0, 1.5 Hz, HHC=CH), 5.05 (1 H, dd, J = 17.0, 1.5 Hz, HHC=CH), 5.29 (1 H, ddd, J = 17.0, 10.0, 9.0 Hz, CH2=CH) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 2.6 (CH), 8.7 (CH2), 11.5 (CH2), 13.7 (CH3), 19.4 (CH), 27.3 (CH2), 29.1 (CH2), 110.5 (CH2), 144.6 (CH) ppm. MS (EI): m/z C13H25Sn [M + - Bu]: 301.0978; 301.0986.
7
Typical Stille
Coupling Procedure: Pd(OAc)2 (10 mol%), Ph3As
(60 mol%), CuI (20 mol%), and LiCl (6 equiv) were dissolved
in NMP, and the mixture was then stirred at r.t. under an argon
atmosphere for 10 min. A soln of the aryltriflate or aryliodide
(1.0 equiv.) and the stannane 3 (1.05 equiv)
in NMP was added dropwise over 1 min, and the mixture was then degassed
and heated to 80 ˚C for 24 h. The cooled mixture was poured
onto H2O (50 mL) and EtOAc (50 mL), and the separated
aqueous extract was extracted with EtOAc (3 × 100
mL). The combined organic extracts were washed successively with
H2O (3 × 20 mL), 2 M aq HCl
(10 mL) and brine (50 mL), then dried (Na2SO4)
and concentrated in vacuo to leave the coupled product (s) as a colourless
oil. Chromatographic separation and purification was carried out
on SiO2, using PE (bp 40-60 ˚C),
then 1-6% EtOAc in PE as eluant. The o-butylphenol (10a)
showed identical spectroscopic data to those reported in the literature.¹0
Butylcinnamate 10b
IR (CHCl3): νmax = 1727cm-¹. ¹H
NMR (360 MHz, CDCl3): δ = 0.94 (3 H,
t, J = 7.0 Hz, CH2CH
3), 1.35 (3 H, t, J = 7.0 Hz, OCH2CH
3), 1.60-1.70 (4
H, m, CH
2CH
2),
2.75 (2 H, t,
J = 7.0
Hz, ArCH2), 4.28 (2 H, t, J = 7.0
Hz, OCH
2CH3), 6.40 (1
H, d, J = 15.0 Hz, COCH=),
7.10-7.70 (4 H, m, ArH), 8.04 (1 H, d, J = 15.0
Hz, ArCH=) ppm. ¹³C NMR (90
MHz, CDCl3): δ = 13.9 (CH3),
14.3 (CH3), 22.5 (CH2), 25.6 (CH2), 33.8
(CH2), 60.5 (CH2), 119.3 (CH), 126.5 (CH),
127.3 (CH), 128.6 (CH), 130.0 (CH), 133.7 (C), 134.0 (C), 142.3 (CH),
168.0 (C) ppm.
Butylaromatic Compound
10c
¹H NMR (360 MHz, CDCl3): δ = 0.96 [3
H, t, J = 7.0 Hz, (CH2)2CH
3], 1.30 (3 H, t, J = 7.5 Hz, OCH2CH
3), 1.33 (2 H, m, CH2CH
2CH3), 1.62 (2
H, app. pent., J = ca. 7 Hz, CH2CH
2CH2) 1.71 (3
H, s, CH=CCH
3), 2.20-2.40
(4 H, m, CH2CH2CO2Et), 2.55 (2
H, t, J = 7.0 Hz, ArCH2),
3.22 (2 H, d, J = 6.0 Hz, ArCH
2CH=), 4.12 (2 H,
q, J = 7.5 Hz, OCH
2CH3), 5.80 (1
H, t, J = 6.0 Hz, =CHCH2), 6.90-7.05
(4 H, m, ArH) ppm. ¹³C NMR (90 MHz,
CDCl3): δ = 14.1 (2 × CH3),
17.1 (CH3), 22.4 (CH2), 29.6 (CH2),
31.9 (CH2), 33.8 (CH2), 34.6 (CH2),
35.2 (CH2), 61.3 (CH2), 122.8 (CH), 125.6
(CH), 125.9 (CH), 128.1 (CH), 128.9 (CH), 135.5 (C), 136.5 (C),
136.6 (C), 173.1 (C) ppm.
Arylvinylcyclopropane
9b
¹H NMR (360 MHz, CDCl3): δ = 1.15-1.30
(2 H, m, CHCH
2CH), 1.60 (3
H, t, J = 7.0 Hz, CH2CH
3), 1.60-1.75 (1 H,
m, CHCH2CH), 2.10-2.20
(1 H, m, CHCH2CH), 4.30 (2 H,
q, J = 7.0 Hz, CH
2CH3), 5.10 (1
H, d, J = 11.0 Hz, CH=CHH), 5.20 (1 H, d, J = 16.0
Hz, CH=CHH), 5.70 (1 H, ddd, J = 16.0, 11.0, 8.0 Hz, CH=CH2), 6.40 (1 H,
d, J = 15.0 Hz, ArCH=CH), 7.00-7.60 (4 H, m, ArH),
8.30 (1 H, d, J = 15.0 Hz, ArCH=CH) ppm.
Vinylcyclopropane
9c
IR (CHCl3): νmax = 3011
(s), 1727 (s), 1634 (m), 1602 (w) cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 1.05 (1 H,
app dt,
J = 8.5, 5.0Hz,
ArCHCHH), 1.22 (3 H, t, J = 7.0
Hz, OCH2CH
3),
1.24-1.27 (1 H, m, ArCHCHH),
1.54-1.59 (1 H, m, H2C=CHCH), 1.72 (3 H, app s, C=CCH3),
1.96 (1 H, ddd, J = 8.5, 5.5,
5.0 Hz, ArCH), 2.36 (2 H, t, J = 7.0Hz, O=CCH2CH
2), 2.43 (2 H, t, J = 7.0 Hz, O=CCH
2CH2), 3.43 (1
H, dd, J = 16.0, 7.0 Hz, ArCHH), 3.49 (1 H, dd, J = 16.0, 7.0
Hz, ArCHH), 4.10 (2 H, q, J = 7.0 Hz, OCH
2CH3),
4.96 (1 H, dd, J = 10.0, 1.5
Hz, HC=CHH), 5.13 (1 H, dd, J = 17.0, 1.5 Hz, HC=CHH), 5.34 (1 H, app tq, J = 7.0,
1.5 Hz, C=CH), 5.58 (1 H, ddd, J = 17.0,
10.0, 8.5 Hz, H2C=CH), 6.99
(1 H, dd, J = 6.0, 2.0 Hz, ArH),
7.12-7.15 (3 H, m, 3 × ArH)
ppm. ¹³C NMR (100 MHz, CDCl3): δ = 14.2 (CH3),
14.6 (CH2), 16.2 (CH3), 23.0 (CH), 25.7 (CH),
31.6 (CH2), 33.2 (CH2), 34.7 (CH2),
60.3 (CH2), 112.4 (CH2), 123.6 (CH), 125.7,
126.0, 126.1 (3 × CH), 128.4 (CH), 134.4 (C),
139.5 (C), 140.9 (C), 141.0 (CH), 173.4 (C) ppm.
MS (ES): m/z C20H26O2Na [M + Na+]:
321.1825; found: 321.1817.