Subscribe to RSS
DOI: 10.1055/s-0029-1217354
Single-Step Symmetrical Double Alkylation of β,γ-Unsaturated δ-Lactams via Magnesium ‘Ate’ Complexes
Publication History
Publication Date:
12 June 2009 (online)

Abstract
An easy approach to symmetrically 3,3-dialkylated derivatives of 3,6-dihydro-1H-pyridin-2-one in a one-pot and a single-step procedure via magnesium ‘ate’ complex is described. [Bu3Mg]Li used as the base showed great basic potential as one equivalent of it allowed double proton abstraction from 3,6-dihydro-1H-pyridin-2-one. Deprotonation at noncryogenic conditions yielded stable magnesiates which on treatment with more than two equivalents of alkyl halides provided 3,3-dialkylated products in good yield. In some cases minor 3,5-dialkylated lactams were formed due to allylic conjugation.
Key words
lactams - magnesium ‘ate’ complex - alkylation - piperidines
- 1
Wittig G.Meyer FJ.Lange G. Justus Liebigs Ann. Chem. 1951, 571: 167 -
2a
Stefan MC.Javier AE.Osaka I.McCullough RD. Macromolecules 2009, 42: 30 -
2b
Shinozuka T.Yamamoto Y.Hasegawa T.Saito K.Naito S. Tetrahedron Lett. 2008, 49: 1619 -
2c
Gallou F.Haenggi R.Hirt H.Marterer W.Schaefer F.Seeger-Weibel M. Tetrahedron Lett. 2008, 49: 5024 -
2d
Lau SYW.Hughes G.O’Shea PD.Davies IW. Org. Lett. 2007, 9: 2239 -
2e
Fleming FF.Gudipati S.Anh Viet V.Mycka RJ.Knochel P. Org. Lett. 2007, 9: 4507 -
2f
Dolman SJ.Gosselin F.O’Shea PD.Davies IW. Tetrahedron 2006, 62: 5092 -
2g
Kii S.Akao A.Iida T.Mase T.Yasuda N. Tetrahedron Lett. 2006, 47: 1877 -
2h
Buron F.Plé N.Turck A.Marsais F. Synlett 2006, 1586 -
2i
Thomas GL.Böhner C.Ladlow M.Spring DR. Tetrahedron 2005, 61: 12153 -
2j
Trost BM.Frederiksen MU.Papillon JP.Harrington PE.Shin S.Shireman BT. J. Am. Chem. Soc. 2005, 127: 3666 -
2k
Xu J.Jain N.Sui Z. Tetrahedron Lett. 2004, 45: 6399 -
2l
Therkelsen FD.Rottländer M.Thorup N.Pedersen EB. Org. Lett. 2004, 6: 1991 -
2m
Tsuji T.Nakamura T.Yorimitsu H.Shinokubo H.Oshima K. Tetrahedron 2004, 60: 973 -
2n
Ito S.Kubo T.Morita N.Matsui Y.Watanabe T.Ohta A.Fujimori K.Murafuji T.Sugihara Y.Tajiri A. Tetrahedron Lett. 2004, 45: 2891 -
2o
Shinokubo H.Oshima K. Eur. J. Org. Chem. 2004, 2081 -
2p
Dumouchel S.Mongin F.Trécourt F.Quéguiner G. Tetrahedron 2003, 59: 8629 -
2q
Fukuhara K.Takayama Y.Sato F. J. Am. Chem. Soc. 2003, 125: 6884 -
2r
Dumouchel S.Mongin F.Trécourt F.Quéguiner G. Tetrahedron Lett. 2003, 44: 3877 -
2s
Dumouchel S.Mongin F.Trécourt F.Quéguiner G. Tetrahedron Lett. 2003, 44: 2033 -
2t
Inoue A.Kondo J.Shinokubo H.Oshima K. Chem. Eur. J. 2002, 8: 1730 -
2u
Mase T.Houpis IN.Akao A.Dorziotis I.Emerson K.Hoang T.Iida T.Itoh T.Kamei K.Kato S.Kato Y.Kawasaki M.Lang F.Lee J.Lynch J.Maligres P.Molina A.Nemoto T.Okada S.Reamer R.Song JZ.Tschaen D.Wada T.Zewge D.Volante RP.Reider PJ.Tomimoto K. J. Org. Chem. 2001, 66: 6775 -
2v
Kondo J.Inoue A.Shinokubo H.Oshima K. Angew. Chem. Int. Ed. 2001, 40: 2085 -
2w
Inoue A.Kitagawa K.Shinokubo H.Oshima K. J. Org. Chem. 2001, 66: 4333 -
2x
Iida T.Wada T.Tomimoto K.Mase T. Tetrahedron Lett. 2001, 42: 4841 -
2y
Kitagawa K.Inoue A.Shinokubo H.Oshima K. Angew. Chem. Int. Ed. 2000, 39: 2481 -
3a
Hatano M.Miyamoto T.Ishihara K. Curr. Org. Chem. 2007, 11: 127 -
3b
Faraks J.Richey HG. Organometallics 1990, 9: 1778 -
3c
Hatano M.Matsumura T.Ishihara K. Org. Lett. 2005, 7: 573 -
3d
Richery HG.DeStephano J. Tetrahedron Lett. 1985, 26: 275 -
3e
Ashby EC.Chao L.-C.Laemmle J.
J. Org. Chem. 1974, 39: 3258 - 4
Mulvey RE.Mongin F.Uchiyama M.Kondo Y. Angew. Chem. Int. Ed. 2007, 46: 3802 -
5a
Bentabed-Ababsa G.Blanco F.Derdour A.Mongin F.Trécourt F.Quéguiner G.Ballesterous R.Abarca B. J. Org. Chem. 2009, 74: 163 -
5b
Hawad H.Bayh O.Hoarau C.Trécourt F.Quéguiner G.Marsais F. Tetrahedron 2008, 64: 3236 -
5c
Awad H.Mongin F.Trécourt F.Quéguiner G.Marsais F. Tetrahedron Lett. 2004, 45: 7873 -
5d
Awad H.Mongin F.Trécourt F.Quéguiner G.Marsais F.Blanco F.Abarca B.Ballesteros R. Tetrahedron Lett. 2004, 45: 6697 - 6
Bayh O.Awad H.Mongin F.Hoarau C.Bischoff L.Trécourt F.Quéguiner G.Marsais F.Blanco F.Abarca B.Ballesteros R. J. Org. Chem. 2005, 70: 5190 - 7
Mongin F.Bucher A.Bazureau JP.Bayh O.Awad H.Trécourt F. Tetrahedron Lett. 2005, 46: 7989 - 8
Awad H.Mongin F.Trécourt F.Quéguiner G.Marsais F.Blanco F.Abarca B.Ballesteros R. Tetrahedron 2005, 61: 4779 -
9a
Ide M.Nakata M. Bull. Chem. Soc. Jpn. 1999, 72: 2491 -
9b
Ide M.Yasuda M.Nakata M. Synlett 1998, 936 -
9c
Yasuda M.Ide M.Matsumoto Y.Nakata M. Bull. Chem. Soc. Jpn. 1998, 71: 1417 -
10a
Sośnicki JG. Synlett 2003, 1673 -
10b
Sośnicki JG.Westerlich S. Tetrahedron Lett. 2002, 43: 1325 -
11a
Sośnicki JG. Tetrahedron 2009, 65: 1336 -
11b
Sośnicki JG. Tetrahedron Lett. 2009, 50: 178 -
11c
Sośnicki JG. Tetrahedron 2007, 63: 11862 - 12
Sośnicki JG. Tetrahedron Lett. 2005, 46: 4295 - 13
Sośnicki JG. Tetrahedron Lett. 2006, 47: 6809 - 14
Fuji K. Chem. Rev. 1993, 115: 2037 -
15a
Pelcman B,Krog-Jensen C,Shen Y,Yee JGK,Mackenzie LF,Zhou Y,Han K, andRaymond JR. inventors; WO 2008110793 A1. ; Chem. Abstr. 2008, 149, 378551 -
15b
Hill MW.Reddy PA.Covey DF.Rothman SM. J. Pharmacol. Exp. Ther. 1998, 285: 1303 -
15c
Reddy PA.Woodward KE.Mclheren SM.Hsiang BCH.Latifi TN.Hill MW.Rothman SM.Ferrendelli JA.Covey DF. J. Med. Chem. 1997, 40: 44 -
16a
Kocharit C.Chaiyanurakkul A.Gallagher T. Synlett 2006, 3069 -
16b
Hanessian S.Tremblay M.Marzi M.Del Ville JR. J. Org. Chem. 2005, 70: 5070 -
16c
Barberis M.Garcia-Losada P.Pleite S.Rodriguez JR.Soriano JF.Mendiola J. Tetrahedron Lett. 2005, 46: 4847 - See, for example:
-
17a
Amat M.Lozano O.Escolano C.Molins E.Bosch J. J. Org. Chem. 2007, 72: 4431 -
17b
Groaning MD.Meyers AI. Tetrahedron 2000, 56: 9843 -
17c
Meyers AI.Seefeld MA.Lefker BA.Blake JF.Williard PG. J. Am. Chem. Soc. 1998, 120: 7429 -
17d
Meyers AI.Seefeld MA.Lefker BA.Blake JF. J. Am. Chem. Soc. 1997, 119: 4565 -
17e
Meyers AI.Lefker BA.Wanner KT.Aitken RA. J. Org. Chem. 1986, 51: 1936 -
18a
Brimble MA.Trzoss M. Tetrahedron 2004, 60: 5613 -
18b
Colombo L.Di Giacomo M.Vinci V.Colombo M.Manzoni L.Scolastico C. Tetrahedron 2003, 59: 4501 -
18c
Ezquerra J.Pedregal C.Rubio A.Vaquero JJ.Matia MP.Martin J.Diaz A.Navio JLG.Deeter JB. J. Org. Chem. 1994, 59: 4327 - 19
Anderson TF.Knight JG.Tchabanenko K. Tetrahedron Lett. 2003, 44: 757 - 20
Niida A.Mizumoto M.Narumi T.Inokuchi E.Oishi S.Ohno H.Otaka A.Kitaura K.Fujii N. J. Org. Chem. 2006, 71: 4118 - 22 Due to a well documented enhancement
effect of LiCl on the reactivity of Grignard reagents it is possible
that the presence of LiX (X = Cl, I)
in the reaction environment influenced basicity of MgBu2,
see:
Rauhut CB.Vu AV.Fleming FF.Knochel P. Org. Lett. 2008, 10: 1187 ; and references cited therein, see also ref. 23a -
23a
Kerr WJ.Watson AJB.Hayes D. Chem. Commun. 2007, 5049 ; and references cited therein -
23b
Richey HG.King BA. J. Am. Chem. Soc. 1982, 104: 4672 - 25
Haasnoot CAG.DeLeeuw FAAM.Altona A. Tetrahedron 1980, 36: 2783
References and Notes
Typical Procedure
for the Dialkylation of 3 Using [Bu
3
Mg]Li
(1a)
To a cooled (0 ˚C) and stirred
solution of BuMgCl (2.1 mmol, 1.05 mL, 2.0 M in THF) in dry THF
(2 mL) in a Schlenk flask, n-BuLi (4.2
mmol, 1.68 mL, 2.5 M in hexane) was added via syringe over 1 min
under argon. A yellow suspension formed was stirred for 5 min and
was next transferred via syringe to a cooled (0 ˚C)
solution of 6-allyl-1-methyl-3,6-dihydro-1H-pyridin-2-ones
(3a, 0.3 g, 2.0 mmol) in THF (10 mL). The
resulting yellow solution was stirred for 30 min at 0 ˚C,
and then benzyl bromide (0.75 g, 4.4 mmol) was added and stirred
for 30 min. After addition of aq sat. NH4Cl (5 mL), the
aqueous layer was extracted with EtOAc (2 × 50
mL) and the combined organic layers were dried over MgSO4.
Filtration, concentration in vacuo, and purification by flash column
chromatography (silica gel, n-hexane-EtOAc = 8:2,
next 7:3) yielded 9a.
Selected Spectroscopic
Data
6-Allyl-3,3-dibenzyl-1-methyl-3,6-dihydro-1
H
-pyridin-2-one
(9a)
Colorless solid (0.62 g, 94%), mp 61-63 ˚C
(from n-hexane). IR (KBr pellet): ν = 3028
(w), 2912 (w), 1628 (s), 1496 (w), 1456 (w), 1398 (w), 1348 (w),
1230 (w), 916 (w), 756 (m), 744 (m), 702 (m), 696 (m) cm-¹. ¹H
NMR (400.1 MHz, CDCl3): δ = 1.03
(1 H, dt, J = 14.0, 8.3 Hz,
6-CHH), 1.86 (1 H, dm, J = 14.0
Hz, 6-CHH), 2.65 (2 H, d, J = 12.6 Hz,
2 × 3-CHH), 2.69 (3 H, s, NCH3),
3.14-3.20 (1 H, m, CH-6), 3.44 (1 H, d, J = 12.6
Hz, 3-CHH), 3.47 (1 H, d, J = 12.6
Hz, 3-CHH), 4.70-4.80 (2 H, m, =CH2),
4.92-5.05 (1 H, m, =CH), 5.42 (1 H, dd, J = 10.3, 3.2 Hz, =CH-5),
5.54 (1 H, dd, J = 10.3, 1.6
Hz, =CH-4), 7.08-7.27 (10 H, m, 2 × C6H5). ¹³C
NMR (100.6 MHz, CDCl3): δ = 32.46 (NCH3),
38.20 (6-CH2), 45.93, 46.58 (2 × 3-CH2),
50.54 (C-3), 59.03 (CH-6), 117.86 (=CH2), 125.33
(=CH-5), 128.80 (=CH-4), 126.20, 126.35, 127.54,
127.79, 130.30, 130.66, 137.61, 137.82 (2 × C6H5),
132.61 (=CH), 170.80 (C-2). GC-MS (EI, 70eV): m/z = 331
(<1) [M+
],
290 (100), 198 (28), 122 (37), 91 (63). Anal. Calcd for C23H25NO:
C, 83.34; H, 7.60; N, 4.23. Found: C, 83.25; H, 7.69; N, 4.13.
PM3 calculations were performed using the HyperChem program (7.52 release).