Synlett 2009(12): 1933-1936  
DOI: 10.1055/s-0029-1217533
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Efficient Synthesis of 3-Alkoxy-4,4-difluoropiperidines

Riccardo Surmonta, Guido Verniesta, Arvid De Weweirea, Jan Willem Thuringb, Gregor Macdonaldb, Frederik Derooseb, Norbert De Kimpe*a
a Department of Organic Chemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
Fax: +32(9)2646243; e-Mail: norbert.dekimpe@UGent.be;
b Johnson & Johnson Pharmaceutical Research & Development, a Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
Further Information

Publication History

Received 23 March 2009
Publication Date:
01 July 2009 (online)

Abstract

Fluorinated piperidines bearing an additional functional group at the heterocyclic ring are important building blocks for use in agrochemical or pharmaceutical chemistry. Therefore, for the first time 3-alkoxy-4,4-difluoropiperidines were synthesized by deoxofluorination of 3-alkoxy-4-piperidinones with morpholinosulfur trifluoride and were selectively N- and O-deprotected. In ­addition, the oxidation of 4,4-difluoro-3-hydroxy-1-trifluoroacetylpiperidine resulted in the interesting 4,4-difluoro-3,3-dihydroxypiperidine.

    References and Notes

  • 2a O’Hagan D. Chem. Soc. Rev.  2008,  37:  308 
  • 2b Purser S. Moore PR. Swallow S. Gouverneur V. Chem. Soc. Rev.  2008,  37:  320 
  • 2c Kirk KL. Org. Process Res. Dev.  2008,  12:  305 
  • 2d Müller K. Faeh C. Diederich F. Science  2007,  317:  1881 
  • 2e Isanbor C. O’Hagan D. J. Fluorine Chem.  2006,  127:  303 
  • 2f Bégué J.-P. Bonnet-Delpon D. J. Fluorine Chem.  2006,  127:  992 
  • 2g Kirk KL. J. Fluorine Chem.  2006,  127:  1013 
  • 3 De Matteis V. van Delft FL. Tiebes J. Rutjes FP. Eur. J. Org. Chem.  2006,  1166 
  • 4 Verniest G. Surmont R. Van Hende E. Deweweire A. Deroose F. Thuring JW. De Kimpe N. J. Org. Chem.  2008,  73:  5458 
  • 5 Allen JG, Krasutsky AP, Wallace OB, Xu Y, and York JS. inventors; WO  2007127693.  ; Chem. Abstr. 2007, 147, 522085
  • 6 Tai VW.-F. Sperandio D. Shelton EJ. Litvak J. Pararajasingham K. Cebon B. Lohman J. Eksterowicz J. Kantak S. Sabbatini P. Brown C. Zeitz J. Reed C. Maske B. Graupe D. Estevez A. Oeh J. Wong D. Ni Y. Sprengeler P. Yee R. Magill C. Neri A. Cai SX. Drewe J. Qiu L. Herich J. Tseng B. Kasibhatla S. Spencer JR. Bioorg. Med. Chem. Lett.  2006,  16:  4554 
  • 7 Norman MH, Pettus LH, Wang X, and Zhu J. inventors; US  2006058308.  ; Chem. Abstr. 2006, 144, 312100
  • 8 Micheli F. Pasquarello A. Tedesco G. Hamprecht D. Bonanomi G. Checchia A. Jaxa-Chamiec A. Damiani F. Davalli S. Donati D. Gallotti C. Petrone M. Rinaldi M. Riley G. Terreni S. Wood M. Bioorg. Med. Chem. Lett.  2006,  16:  3906 
  • 9a Berlin M. Ting PC. Vaccaro WD. Aslanian R. McCormick KD. Lee JF. Albanese MM. Mutahi MW. Piwinski JJ. Shih N.-Y. Duguma L. Solomon DM. Zhou W. Sher R. Favreau L. Bryant M. Korfmacher WA. Nardo C. West RE. Anthes JC. Williams SM. Wu R.-L. She HS. Rivelli MA. Corboz MR. Hey JA. Bioorg. Med. Chem. Lett.  2006,  16:  989 
  • 9b Davey D, Lee W, Lu S.-F, Phillips G, Wei GP, and Ye B. inventors; US  2005101644.  ; Chem. Abstr. 2005, 142, 463444
  • 9c Deshpande PK, Sindkhedkar MD, Phansalkar MS, Yeole RD, Gupte SV, Chugh Y, Shetty N, Bhagwat SS, De Souza NJ, and Patel MV. inventors; WO  2005054234.  ; Chem. Abstr. 2005, 143, 59964
  • 9d Blizzard TA. DiNinno F. Morgan JD. Wu JY. Chen HY. Kim S. Chan W. Birzin ET. Yang YT. Pai L.-Y. Zhang Z. Hayes EC. DaSilva CA. Tang W. Rohrer SP. Schaeffer JM. Hammond ML. Bioorg. Med. Chem. Lett.  2004,  14:  3865 
  • 10a Fatheree P, Gendron R, Goldblum AA, Long DD, Marquess D, Turner SD, and Choi S.-K. inventors; US  2006135764.  ; Chem. Abstr. 2006, 145, 83322
  • 10b John V, Moon JB, Pulley SR, Rich DH, Brown DL, Jagodzinska B, and Jacobs JS. inventors; WO  2003043987.  ; Chem. Abstr. 2003, 139, 6887
  • 10c Stanton MG, Munoz B, Sloman DL, Hubbs J, and Hamblett C. inventors; WO  2008030391.  ; Chem. Abstr. 2008, 148, 331574
  • 10d Burger M, Lindvall M, Han W, Lan J, Nishiguchi G, Shafer C, Bellamacina C, Huh K, Atallah G, McBride C, Antonios-McCrea W, Zavorotinskaya T, Walter A, and Garcia P. inventors; WO  2008106692.  ; Chem. Abstr. 2008, 149, 332352
  • 11 Zacuto MJ. Caia D. Tetrahedron Lett.  2005,  46:  447 
  • 12 Lal GS. Pez GP. Pesaresi RJ. Prozonic FM. Chem. Commun.  1999,  215 
  • 17 Bégué J.-P. Bonnet-Delpon D. Tetrahedron  1991,  47:  3207 
1

Aspirant of the Research Foundation - Flanders (FWO-Vlaanderen).

13

3-Benzyloxy-4,4-difluoro-1-(trifluoroacetyl)piperidine (9a)
In a 25 mL flask, 3-benzyloxy-1-(trifluoroacetyl)-4-piperidinone (8a, 0.30 g, 1.00 mmol) was dissolved in anhyd CH2Cl2 (10 mL). The solution was cooled to -78 ˚C under nitrogen atmosphere and morpholinosulfur trifluoride (Morph-DAST; 0.53 g, 3.00 mmol, 3 equiv, 0.37 mL) was added dropwise. The reaction mixture was allowed to warm to r.t. over 1 h and was stirred for 2 h at the same temperature. The mixture was poured in CH2Cl2 (10 mL) and H2O (10 mL). The separated aqueous phase was extracted twice with CH2Cl2 (10 mL), and the combined organic phases were dried over MgSO4. After filtration, the solvent was evaporated in vacuo, and the concentrate was purified via flash chromatography over silica gel (hexane-EtOAc = 83:17, R f  = 0.29) yielding 0.24 g of piperidine 9a (0.73 mmol, 73%). Ratio of rotamers = 3:2; colorless oil. ¹H NMR (300 MHz, CDCl3): δmajor = 1.88-2.05 (1 H, m, NCH2CH aHb), 2.17-2.43 (1 H, m, NCH2CHa H b), 3.21 (1 H, br d, J = 14.9 Hz, NCH aHbCH), 3.37 (1 H, ddd, J = 14.5, 11.4, 3.2 Hz, NCH aHbCH2), 3.55-3.73 (1 H, m, OCH), 3.80-3.93 (1 H, m, NCHa H bCH2), 4.44-4.53 (1 H, m, NCHa H bCH), 4.63 (1 H, d, J = 11.8 Hz, CH aHbPh), 4.71 (1 H, d, J = 11.8 Hz, CHa H bPh), 7.21-7.44 (5 H, m, 5 × CHar); δminor = 1.88-2.05 (1 H, m, NCH2CH aHb), 2.17-2.43 (1 H, m, NCH2CHa H b), 3.27 (1 H, ddd, J = 14.0, 10.5, 3.4 Hz, NCH aHbCH2), 3.48 (1 H, br d, J = 14.3 Hz, NCH aHbCH), 3.55-3.73 (1 H, m, OCH), 3.80-3.93 (1 H, m, NCHa H bCH), 4.10-4.21 (1 H, m, NCHa H bCH2), 4.64 (1 H, d, J = 11.6 Hz, CH aHbPh), 4.74 (1 H, d, J = 11.6 Hz, CHa H bPh), 7.21-7.44 (5 H, m, 5 × CHar). ¹9F NMR (282 MHz, CDCl3): δ = -67.8 and -68.8 (3 F, s, CF3), -107.4 (1 F, dd, J = 247.6, 24.3 Hz, CF aFb,rotamer1), -107.6 (1 F, br d, J = 247.6 Hz, CF aFb,rotamer2), -108.5 (1 F, br d, J = 247.6 Hz, CFa F b,rotamer1), -109.2 (1 F, br d, J = 247.6 Hz, CFa F b,rotamer2). ¹³C NMR (75 MHz, CDCl3): δ = 30.3 and 31.1 (t, J = 22.8 Hz), 40.1 and 42.3, 44.1 and 47.0, 72.5 and 73.4, 73.1 and 73.5 (t, J = 20.5 Hz), 116.5 (q, J = 288.2 Hz), 120.0 (t, J = 246.9 Hz) and 120.6 (dd, J = 250.4, 244.6 Hz), 128.0, 128.1, 128.2, 128.4, 128.7, 136.9 and 137.1, 156.4 and 156.5 (q, J = 36.2 Hz). IR (NaCl): ν = 1699, 1203, 1116 cm. GC-MS (EI): m/z (%) = 323 (22) [M+], 107 (71) [C7H9O+], 91 (100) [C7H7 +]. Anal. Calcd: C, 52.02; H, 4.37; N, 4.33. Found: C, 51.76; H, 4.11; N, 4.01.

14

3-Benzyloxy-4,4-difluoropiperidine (10) In a 25 mL flask, 3-benzyloxy-4,4-difluoro-1-(trifluoro- acetyl)piperidine (9a, 0.50 g, 1.55 mmol) was dissolved in MeOH (6 mL). A solution of K2CO3 (0.64 g, 4.64 mmol, 3 equiv) in H2O (3 mL) was added, and the mixture was stirred for 12 h at r.t. After completion of the reaction, the solvent was evaporated in vacuo, and the residue was dissolved in CH2Cl2 (20 mL) and H2O (20 mL). The separated aqueous phase was extracted twice with CH2Cl2 (20 mL) and the combined organic phases dried over MgSO4. After filtration, the solvent was evaporated in vacuo, yielding 0.35 g of piperidine 10 (1.55 mmol, 100%, purity >92%). For analytical purposes a 50 mg sample of the compound was subjected to an acid-base extraction (30% yield), excluding the necessity of flash chromatography to yield pure compound 10 as a yellow oil. ¹H NMR (300 MHz, CDCl3): δ = 1.48-1.72 (1 H, br s, NH), 1.87 (1 H, dddt, J = 24.7, 13.0, 4.0, 1.3 Hz, CH aHb), 2.12 (1 H, dddd, J = 35.4, 13.0, 10.2, 5.0 Hz, CHa H b), 2.73-2.91 (2 H, m, NCH 2CH2), 2.91-3.10 (2 H, m, NCH 2CH), 3.45-3.54 (1 H, m, OCH), 4.63 (1 H, d, J = 11.8 Hz, OCH aHb), 4.80 (1 H, d, J = 11.8 Hz, OCHa H b), 7.27-7.38 (5 H, m, 5 × CHar). ¹9F NMR (282 MHz, CDCl3): δ = -104.9 (1 F, br s),-105.7 (1 F, br s). ¹³C NMR (75 MHz, CDCl3): δ = 32.5 (t, J = 20.8 Hz), 42.8 (t, J = 4.0 Hz), 48.4 (t, J = 2.3 Hz), 72.8, 74.7 (t, J = 24.8 Hz), 121.6 (t, J = 247.5 Hz), 127.8, 127.9, 128.4, 137.7. IR (ATR): ν = 3324, 3032, 2930, 1454, 1351, 1200, 1111, 967, 737, 698 cm. MS (ES+): m/z (%) = 228 (100) [M + H+]. Anal. Calcd: C, 63.42; H, 6.65; N, 6.13. Found: C, 63.08; H, 6.01; N, 5.95.

15

4,4-Difluoro-3-hydroxy-1-(trifluoroacetyl)piperidine (11) In a dry pressure vessel, 3-benzyloxy-4,4-difluoro-1-(trifluoroacetyl)piperidine (9a, 1.10 g, 3.40 mmol) was dissolved in EtOAc (10 mL). After adding 10% Pd/C (0.22 g) at 0 ˚C, the mixture was stirred during 15 h at r.t. under hydrogen pressure of 4.75 bar. The mixture was filtered over Celite®, and the filtrate was evaporated in vacuo to yield 0.75 g of pure piperidine 11 (3.20 mmol, 94%). Ratio of rotamers = 53:47; yellow oil. ¹H NMR (300 MHz, CDCl3): δmajor = 1.93-2.11 (1 H, m, NCH2CH aHb), 2.18-2.48 (1 H, m, NCH2CHa H b), 2.60-3.10 (1 H, br s, OH), 3.47 (1 H, d × m, J = 13.8 Hz, NCH aHbCH), 3.46-3.54 (1 H, m, NCH aHbCH2), 3.81-3.95 (1 H, m, NCHa H bCH2), 3.97-4.05 (1 H, m, OCH), 4.28 (1 H, d × m, J = 13.8 Hz, NCHa H bCH); δminor = 1.93-2.11 (1 H, m, NCH2CH aHb), 2.18-2.48 (1 H, m, NCH2CHa H b), 2.60-3.10 (1 H, br s, OH), 3.41 (1 H, ddd, J = 13.8, 10.0, 3.7 Hz, NCH aHbCH2), 3.65 (1 H, d, J =
13.8 Hz, NCH aHbCH), 3.81-3.95 (2 H, m, OCH and NCHa H bCH), 4.14 (1 H, dt, J = 13.8, 4.8 Hz, NCHa H bCH2). ¹9F NMR (282 MHz, CDCl3): δ = -67.8 and -68.9 (3 F, s, CF3), -110.1 (1 F, dd, J = 246.0, 21.1 Hz, CF aFb,rotamer1),
-110.4 (1 F, dd, J = 246.0, 23.7 Hz, CF aFb,rotamer2), -111.2 (1 F, br d, J = 246.0 Hz, CFa F b,rotamer1), -111.6 (1 F, br d, J = 246.0 Hz, CFa F b,rotamer2). ¹³C NMR (75 MHz, CDCl3):
δ = 29.7 and 30.7 (t, J = 23.1 Hz), 40.2 (t, J = 5.2 Hz), 42.3 (d, J = 3.5 Hz), 46.3 (t, J = 3.5 Hz), 47.9 (d, J = 2.3 Hz), 67.5 (t, J = 26.5 Hz), 67.7 (t, J = 27.1 Hz), 116.3 (q, J = 287.7 Hz), 119.9 and 120.1 (t, J = 246.3 Hz), 156.7 (q, J = 36.5 Hz). IR (ATR): ν = 3444, 1683, 1464, 1185, 1111, 967
cm. MS (ES+): m/z (%) = 251 (100) [M + NH4 +]. Anal. Calcd: C, 36.06; H, 3.46; N, 6.01. Found: C, 35.79; H, 3.09; N, 5.88.

16

4,4-Difluoro-3,3-dihydroxy-1-(trifluoroacetyl)piper-idine (14)
In a 10 mL flask, 4,4-difluoro-3-hydroxy-1-(trifluoro-acetyl)piperidine (11, 0.10 g 0.43 mmol) was dissolved in anhyd CH2Cl2 (5 mL). After adding Dess-Martin periodinane (0.36 g, 0.86 mmol, 2.0 equiv), the solution was stirred for 15 h at r.t. The mixture was diluted with Et2O (30 mL), and the organic phase was washed three times with a sat. aq NaHCO3 solution (20 mL). The organic phase was dried over MgSO4, and after filtration the solvent was evaporated in vacuo. The concentrate was dissolved in Et2O (5 mL) and cooled to -40 ˚C to crystallize residues of the Dess-Martin periodinane reagent. After filtration of the solids, the filtrate was evaporated in vacuo to yield 0.06 g of piperidine 14 (0.26 mmol, 60%). Ratio of rotamers = 2:1; colorless oil. ¹H NMR (300 MHz, CDCl3): δmajor = 2.11-2.31 (2 H, m, NCH2CH 2), 3.71 (2 H, t, J = 6.1 Hz, NCH 2CH2), 3.83 [2 H, s, NCH 2C(OH)2], 5.52 (2 H, br s, 2 × OH);
δminor = 2.11-2.31 (2 H, m, NCH2CH 2), 3.67 [2 H, s, NCH 2C(OH)2], 3.78 (2 H, t, J = 6.1 Hz, NCH 2CH2), 5.52 (2 H, br s, 2 × OH). ¹9F NMR (282 MHz, CDCl3): δ = -67.2 and -68.9 (3 F, s, CF3), -119.6 (2 F, t, J = 13.2 Hz, CF2,rotamer1), -119.7 (2 F, t, J = 13.2 Hz, CF2,rotamer2). ¹³C NMR (75 MHz, CDCl3): δmajor = 31.6 and 30.2 (t, J = 23.1 Hz), 40.2 (t, J = 4.6 Hz), 42.6 (m), 49.9 and 51.6, 90.8 and 91.5 (t, J = 24.2 Hz), 116.3 and 116.3 (q, J = 287.3 Hz), 118.7 and 119.0 (t, J = 250.9 Hz), 156.6 and 156.8 (q, J = 36.5 Hz). IR (ATR,): ν = 3410, 1685, 1461, 1187, 1112, 964 cm. MS (ES+): m/z (%) = 267 (100)[M + NH4 +]. Anal. Calcd: C, 33.75; H, 3.24; N, 5.62. Found: C, 33.41; H, 3.49; N, 5.43.