Subscribe to RSS
DOI: 10.1055/s-0029-1217538
Synthesis of β-Amino Alcohols via the Reduction of Lactamides Derived from Ethyl (2S)-Lactate with Borane-Methyl Sulfide
Publication History
Publication Date:
03 July 2009 (online)
Abstract
Reactions of ethyl (2S)-lactate with various amines affords lactamides that are reduced with borane-methyl sulfide in the presence of boron trifluoride etherate to generate enantiomerically pure β-amino alcohols in good yield.
Key words
lactamides - borane-methyl sulfide - amino alcohols - asymmetric synthesis - reductions
-
2a
Handbook of Reagents for Organic Synthesis:
Chiral Reagents for Asymmetric Synthesis
Paquette LA. Wiley; Chichester: 2003. -
2b
Asymmetric
Synthesis - The Essentials
Christmann M.Bräse S. Wiley-VCH; Weinheim: 2007. -
3a
Compendium of Chiral Auxiliary Applications
Roos G. Academic Press; New York: 2002. -
3b
Gnas Y.Glorius F. Synthesis 2006, 1899 -
4a
Soai K.Niwa S. Chem. Rev. 1992, 92: 833 -
4b
Knochel P.Singer RD. Chem. Rev. 1993, 93: 2117 -
4c
Pu L.Yu H.-B. Chem. Rev. 2001, 101: 757 -
5a
Evans DA. Aldrichimica Acta 1982, 15: 23 -
5b
Ager DJ.Prakash I.Schaad DR. Aldrichimica Acta 1997, 30: 3 -
6a
Meyers AI.Lutomski KA. Acc. Chem. Res. 1978, 11: 375 -
6b
Gant TG.Meyers AI. Tetrahedron 1994, 50: 2297 -
6c
Meyers AI. J. Org. Chem. 2005, 70: 6137 - 7
Dimitrov V.Kostova K. Lett. Org. Chem. 2006, 3: 176 - 8
Gladiali S.Alberico E. Chem. Soc. Rev. 2006, 35: 226 - From the reduction of α-amino ketones:
-
9a
Tramontini M. Synthesis 1982, 605 -
9b
Hoffman RV.Maslouh N.Cervantes-Lee F. J. Org. Chem. 2002, 67: 1045 -
9c
Fraser DS.Park SB.Chong JM. Can. J. Chem. 2004, 82: 87 - From the manipulation of cyanohydrins:
-
9d
Jackson WR.Jacobs HA.Jayatilake GS.Matthews BR.Watson KG. Aust. J. Chem. 1990, 43: 2045 - From nucleophilic additions to α-amino aldehydes:
-
9e
Reetz MT. Angew. Chem., Int. Ed. Engl. 1991, 30: 1531 - From nucleophilic additions to chiral imine derivatives:
-
9f
Tang TP.Volkman SK.Ellman JA. J. Org. Chem. 2001, 66: 8772 -
9g
Barrow JC.Ngo PL.Pellicore JM.Selnick HG.Nantermet PG. Tetrahedron Lett. 2001, 42: 2051 - From the reduction of nitrogen-stabilized oxallyl cation [4+3] cycloadducts:
-
9h
Huang J.Ianni JC.Antoline JE.Hsung RP.Kozlowski MC. Org. Lett. 2006, 8: 1565 -
10a
Karrer P.Portmann P.Suter M. Helv. Chim. Acta 1948, 31: 1617 -
10b
Seki H.Koga K.Matsuo H.Ohki S.Matsuo I.Yamada S. Chem. Pharm. Bull. 1965, 13: 995 -
10c
Prasad B.Saund AK.Bora JM.Mathur NK. Ind. J. Chem. 1974, 12: 290 -
10d
Smith GA.Gawley RE. Org. Synth. 1985, 63: 136 -
10e
Gage JR.Evans DA. Org. Synth. 1989, 68: 77 -
10f
Giannis A.Sandhoff K. Angew. Chem., Int. Ed. Engl. 1989, 28: 218 -
10g
Dickman DA.Meyers AI.Smith GA.Gawley RE. Organic Syntheses Collect Vol. VII: Wiley and Sons; New York: 1990. p.530 -
10h
Dharanipragada R.Alarcon A.Hruby VJ. Org. Prep. Proced. Int. 1991, 23: 396 -
10i
Abiko A.Masamune S. Tetrahedron Lett. 1992, 33: 5517 -
10j
McKennon MJ.Meyers AI.Drauz K.Schwarm M. J. Org. Chem. 1993, 58: 3568 -
11a
Hodgson DM.Gibbs AR.Lee GP. Tetrahedron 1996, 52: 14361 -
11b
Comprehensive
Organic Synthesis
Part 1.3.4.1., Vol. 6:
Mitsunobu O.Winterfeldt E. Pergamon; New York: 1996. -
11c
Ager DJ.Prakash I.Schaad DR. Chem. Rev. 1996, 96: 835 -
11d
Bergmeier SC. Tetrahedron 2000, 56: 2561 -
13a
Ratchford WP.Fisher CH. J. Org. Chem. 1950, 15: 317 -
13b
Fein ML.Filachione EM. J. Am. Chem. Soc. 1953, 75: 2097 -
13c
Shapiro SL.Rose IM.Freedman L. J. Am. Chem. Soc. 1959, 81: 6322 -
13d
Dukes M.Smith LH. J. Med. Chem. 1971, 14: 326 - With LiAlH4:
-
14a
See ref. 13d.
-
14b
Yoneyama K.Ichizen N.Konnai M.Takematsu T.Ushinohama K.Jikihara T. Agric. Biol. Chem. 1984, 48: 995 -
14c
Lai J.-Y.Shi X.-X.Gong Y.-S.Dai L.-X. J. Org. Chem. 1993, 58: 4775 - With NaBH4/H2SO4:
-
14d
Taoka N,Yasohara Y,Yao T,Maehara K, andUeda Y. inventors; WO 2002070482. - 15
Cobb AJA.Marson CM. Tetrahedron 2005, 61: 1269 -
16a
Brown HC.Narasimhan S.Choi YM. Synthesis 1981, 996 -
16b
Brown HC.Choi YM.Narasimhan S.
J. Org. Chem. 1982, 47: 3153 - 19 Lactamides 8a-d have recently been used as chiral auxiliaries,
see:
Ammazzalorso A.Amoroso R.Bettoni G.De Filippis B.Fantacuzzi M.Giampietro L.Maccallini C.Tricca ML. Eur. J. Org. Chem. 2006, 4088 - Compound 8a:
-
20a
See ref. 13a.
-
20b
Ito Y.Kobayashi Y.Kawabata T.Takase M.Terashima S. Tetrahedron 1989, 45: 5767 -
20c
Schurig V.Betschinger F. Bull. Soc. Chim. Fr. 1994, 131: 555 - Compound 8b:
-
20d
See ref. 13a.
-
20e
Schurig V.Hintzer K.Leyrer U.Mark C.Pitchen P.Kagan HB. J. Organomet. Chem. 1989, 370: 81 -
20f
See ref. 20c. Compound 8c:
-
20g
See ref. 13a.
-
20h
Tasaka A.Tamura N.Matsushita Y.Teranishi K.Hayashi R. Chem. Pharm. Bull. 1993, 41: 1035 -
20i
Upadhayaya R.-S.Sinha N.Jain S.Kishore N.Chandra R.Arora S.-K. Bioorg. Med. Chem. 2004, 12: 2225 - Compound 8d:
-
20j
See ref. 19. Racemic 8f:
-
20k
See ref 13a,c. Compound 8g:
-
20l
Adamczyk M.Grote J.Rege S. Tetrahedron: Asymmetry 1997, 8: 2509 - Compound 8h:
-
20m
Savinov SN.Austin DJ. Org. Lett. 2002, 4: 1415 - Compound 8i:
-
20n
See ref. 14c. Compound 8j:
-
20o
Harada K.Munegumi T.Nomoto S. Tetrahedron Lett. 1981, 22: 111 -
20p
Harada K.Munegumi T. Bull. Chem. Soc. Jpn. 1984, 57: 3203 -
20q
See ref. 14c. Compound 8l:
-
20r
Kern T. Makromol. Chem. 1955, 16: 89 - Compound 8m:
-
20s
Tounsi N.Dupont L.Mohamadou A.Cadiou C.Aplincourt M.Plantier-Royon R.Massicot F.Portella C. New J. Chem. 2004, 28: 785 - Compound 8n:
-
20t
See ref. 20s.
- Racemic 9a:
-
21a
Reid WB.Wright JB.Kolloff HG.Hunter JH. J. Am. Chem. Soc. 1948, 70: 3100 -
21b
Halverstadt IF.Hardie WR.Williams AR. J. Am. Chem. Soc. 1959, 81: 3618 -
21c
Azizi N.Saidi MR. Org. Lett. 2005, 7: 3649 - Compound 9b:
-
21d
Rojkovicova T.Lehotay J.Cizmarik J. Pharmazie 2003, 58: 483 -
21e
Martin-Matute B.Edin M.Bogar K.Kaynak FB.Baeckvall J.-E. J. Am. Chem. Soc. 2005, 127: 8817 - Compound 9c:
-
21f
Angeloni AS. Gazz. Chim. Ital. 1977, 107: 421 - Racemic 9d:
-
21g
Redel B. Bull. Soc. Chim. Fr. 1955, 92: 1411 -
21h
Bourquin J.-P.Schwarb G.Gamboni G.Fischer R.Ruesch L.Guldimann S.Theus V.Schenker E.Renz J. Helv. Chim. Acta 1958, 41: 1072 - Racemic 9g:
-
21i
Beckett M. J. Pharm. Pharmacol. 1968, 20: 218 - Compound 9h:
-
21j
Kashima C.Harada K. J. Chem. Soc., Perkin Trans. 1 1988, 1521 -
21k
Brun EM.Gil S.Parra M. Tetrahedron: Asymmetry 2001, 12: 915 -
21l
Gawronski J.Kolbon H.Kwit M. Enantiomer 2002, 7: 85 - Compound 9i:
-
21m
See ref. 14b.
-
21n
See ref. 14c. Compound 9j:
-
21o
See ref. 14b.
-
21p
See ref. 14c. Racemic 9k:
-
21q
Steck EA.Buck JS.Fletcher LT. J. Am. Chem. Soc. 1957, 79: 4414 -
21r
Hall JL.Dean WE.Pacovsky EA. J. Am. Chem. Soc. 1960, 82: 3303 -
21s
Butula I.Karlovic G. Justus Liebigs Ann. Chem. 1976, 1455
References and Notes
New address: F. W. Lewis, Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK.
12Cost per gram from Aldrich Chemical Company: ethyl (2S)-lactate: £0.05; (2S)-2-methyloxirane: £8.66.
17
Synthesis of Lactamides
8a-n - General Procedure
Ethyl (2S)-lactate (7,
88.2 mmol, 1 equiv) and the appropriate amine (114.6 mmol, 1.3 equiv)
were placed in a flask and heated under reflux for 24 h. The solution
was allowed to cool to r.t., the volatiles were removed under reduced
pressure (1.33˙10-4 bar), and the lactamide
was purified by vacuum distillation or recrystallization. For the synthesis
of bislactamides 8k and 8l,
0.5 equiv of amine were used. Compounds 8a-d,f-j,l-n are known.²0
Characterization Data for 8e
Yellow
oil, bp 101-104 ˚C (1.33˙10-4 bar). [α]D
¹6 -16.6
(c 1.31, CHCl3). IR (neat):
3308 (OH, NH), 2978, 1655 (C=O), 1532, 1457, 1364, 1275,
1124, 1048, 978 cm-¹. ¹H
NMR (400.1 MHz, CDCl3): δ = 6.90
(s, 1 H, exch. D2O, NH), 4.18 (q, J = 6.5
Hz, 1 H, CHOH), 3.84 (br s, 1 H, exch.
D2O, OH), 2.67-2.74 (m, 1 H, CH), 1.39 (d, J = 6.5 Hz,
3 H, CH3), 0.72-0.84 (m, 2 H, CH2),
0.46-0.58 (m, 2 H, CH2). ¹³C
NMR (100.6 MHz, CDCl3): δ = 176.1
(C=O), 67.7 (CHOH), 21.6 (CH), 20.6 (CH3), 5.9
(CH2), 5.8 (CH2). HRMS (EI, MeOH): m/z calcd for C6H11NO2 [M + Na]+:
152.0687; found: 152.0680.
Characterization
Data for 8k
White solid, mp 97-98 ˚C
(10% EtOH in THF). [α]D
¹6 -24.7 (c 1.96, MeOH). IR (Nujol): 3323 (OH),
3086 (NH), 2926, 1662 (C=O), 1561, 1458, 1368, 1310, 1274,
1223, 1129, 1079, 937 cm-¹. ¹H
NMR (400.1 MHz, DMSO-d
6): δ = 7.81 (s,
1 H, exch. D2O, NH), 5.48 (s, 1 H, exch. D2O,
NH), 3.94 (q, J = 6.5
Hz, 2 H, 2 × CHOH),
3.36 (br s, 2 H, exch. D2O, 2 × OH),
3.16 (app t, J = 2.5
Hz, 4 H, 2 × CH
2NH),
1.19 (d, J = 6.5
Hz, 6 H, 2 × CH3). ¹³C
NMR (100.6 MHz, DMSO-d
6): δ = 174.8
(2 × C=O), 67.2 (2 × CHOH),
38.2 (2 × CH2NH), 21.0 (2 × CH3).
HRMS (EI, MeOH): m/z calcd for
C8H16N2O4 [M + Na]+:
227.1008; found: 227.1010.
Synthesis of β-Amino
Alcohols 9a-n - General Procedure
The
lactamide 8 (23.7 mmol, 1 equiv) was dissolved
in dry 1,2-dimethoxyethane (15 mL/g) in an oven-dried flask equipped
with a Dean-Stark trap and reflux condenser under a nitrogen
atmosphere. Boron trifluoride etherate (47.5 mmol, 2 equiv) was
added, and then borane-methyl sulfide (47.5 mmol, 2 equiv)
was added dropwise via syringe. Once the evolution of H2 had
ceased, the solution was heated under reflux for 24 h (ca. 2-3
mL of distillate collected) and the solvents were removed in vacuo.
The resulting colorless oil was carefully diluted with 6 M HCl (15
mL/g) and boiled for ca. 5 min. The resulting clear solution
was neutralized while still hot with 6 M NaOH (15 mL/g)
and then allowed to cool to r.t. before being saturated with solid
K2CO3 and extracted with CHCl3 (3 × 50
mL). The combined organic extracts were dried over MgSO4 and
evaporated to afford the crude β-amino alcohol 9 which was purified by vacuum distillation
or recrystallization. In the case of bislactamides 8k and 8l, 4 equiv of both boron trifluoride etherate
and borane-methyl sulfide were used. Compounds 9a-d,f-k are known.²¹
Characterization Data for 9e
Colorless
liquid, bp 76 ˚C (1.33˙10-² to
2.66˙10-² bar). [α]D
¹6 +41.9
(c 4.95, CHCl3). IR (neat):
3307 (OH, NH), 2965, 2931, 1451, 1373, 1141, 1103, 1066, 1015, 917,
816 cm-¹. ¹H NMR
(400.1 MHz, CDCl3): δ = 3.79
(dqd, J = 10.0,
6.5, 3.0 Hz, 1 H, CHOH), 2.83 (dd, J = 12.0,
3.0 Hz, 1 H, CH
2NH), 2.50
(dd, J = 12.0,
10.0 Hz, 1 H, CH
2NH), 2.28
(br s, 2 H, exch. D2O, OH and NH), 2.13-2.18
(m, 1 H, CH), 1.16 (d, J = 6.5
Hz, 3 H, CH3), 0.41-0.51 (m, 2 H, CH2), 0.29-0.40
(m, 2 H, CH2). ¹³C NMR (100.6
MHz, CDCl3): δ = 65.0
(CHOH), 56.4 (CH2NH), 29.8 (CH), 19.9 (CH3), 6.5
(CH2), 5.4 (CH2). Anal. Calcd for C6H13NO:
C, 62.61; H, 11.30; N, 12.17. Found: C, 62.39; H, 11.58; N, 11.95.
Characterization Data for 9l
White
solid, mp 83-84 ˚C (CHCl3). [α]D
¹7 +34.2
(c 3.99, CHCl3). IR (Nujol):
3273 (OH), 3181 (NH), 2914, 1456, 1366, 1135, 1084, 985, 935, 900,
846 cm-¹. ¹H NMR
(400.1 MHz, CDCl3): δ = 3.80
(dqd, J = 9.5,
6.0, 3.0 Hz, 2 H, 2 × CHOH),
2.93 (br s, 4 H, exch. D2O, 2 × NH
and 2 × OH), 2.70 (dd, J = 12.0,
3.0 Hz, 2 H, CH
2CHOH), 2.53-2.70
(m, 4 H, 2 × CH
2NH),
2.42 (dd, J = 12.0,
9.5 Hz, 2 H, CH
2CHOH), 1.46-1.57
(m, 4 H, 2 × CH
2CH2NH),
1.31-1.39 (m, 4 H, 2 × CH
2CH2CH2NH),
1.16 (d, J = 6.0
Hz, 6 H, 2 × CH3). ¹³C
NMR (100.6 MHz, CDCl3): δ = 65.3 (2 × CHOH),
56.8 (2 × CH2NH), 49.4 (2 × CH2CHOH), 29.8 (2 × CH2CH2NH), 27.0
(2 × CH2CH2CH2NH),
20.7 (2 × CH3). HRMS (EI,
MeOH): m/z calcd for C12H28N2O2 [M + H]+:
233.2229; found: 233.2234.
Characterization
Data for 9m
Colorless liquid, bp 62 ˚C
(1.33˙10-4 bar). [α]D
¹6 +34.2
(c 3.61, CHCl3). IR (neat):
3304 (OH, NH), 2942, 2818, 1460, 1370, 1277, 1129, 1055, 846, 778
cm-¹. ¹H NMR (400.1 MHz,
CDCl3): δ = 3.78
(dqd, J = 9.5,
6.0, 3.0 Hz, 1 H, CHOH), 2.65-2.78
(m, 3 H, CH
2CHOH and CH
2NH), 2.42 (dd, J = 12.0,
9.5 Hz, 1 H, CH
2CHOH), 2.37-2.46 [m,
2 H, CH
2N(CH3)2],
2.23 [s, 6 H, N(CH3)2],
1.15 (d, J = 6.0
Hz, 3 H, CH3). ¹³C NMR (100.6
MHz, CDCl3): δ = 65.1
(CHOH), 58.7 [CH2N(CH3)2],
56.5 (CH2CHOH), 46.3 (CH2NH),
45.0 [N(CH3)2], 20.0 (CH3).
HRMS (EI, MeOH): m/z calcd for C7H18N2O [M + H]+:
146.1181; found: 146.1187.
Characterization
Data for 9n
Colorless liquid, bp 72-76 ˚C
(1.33˙10-4 bar). [α]D
¹6 +37.2
(c 1.68, CHCl3). IR (neat):
3303 (OH, NH), 2941, 2816, 1461, 1372, 1265, 1127, 1061, 839 cm-¹. ¹H
NMR (400.1 MHz, CDCl3): δ = 3.79
(dqd, J = 9.5,
6.3, 3.0 Hz, 1 H, CHOH), 2.70 (dd, J = 12.1,
3.0 Hz, 1 H, CH
2CHOH), 2.61-2.75
(m, 2 H, CH
2NH), 2.41 (dd, J = 12.1,
9.5 Hz, 1 H, CH
2CHOH), 2.34 [t, J = 7.2 Hz,
2 H, CH
2N(CH3)2],
2.23 [s, 6 H, N(CH
3)2],
1.66 (q, J = 7.0
Hz, 2 H, CH2), 1.15 (d, J = 6.3
Hz, 3 H, CH3). ¹³C NMR (100.6
MHz, CDCl3): δ = 65.3 (CHOH),
57.7 [CH2N(CH3)2],
56.7 (CH2CHOH), 47.6 (CH2NH), 45.5 [N(CH3)2],
27.9 (CH2), 20.4 (CH3). HRMS (EI, MeOH): m/z calcd for C8H20N2O [M + H]+:
161.1654; found: 161.1646.