RSS-Feed abonnieren
DOI: 10.1055/s-0029-1217708
A Novel Approach to Monobenzannulated Spiroketals Using Styrenes in the Kulinkovich Reaction
Publikationsverlauf
Publikationsdatum:
31. Juli 2009 (online)

Abstract
The synthesis of a series of 5,6-monobenzannulated spiroketals is reported. The use of various styrenes in a Kulinkovich reaction with an appropriately functionalized aliphatic ester affords cyclopropanol products which under basic conditions underwent ring opening to form ketone precursors to the spiroketals. Deprotection of the hydroxyl groups and subsequent cyclization afforded monobenzannulated spiroketals related to the core structure of berkelic acid.
Key words
Kulinkovich reaction - ring opening - cyclopropanol - spiroketal - berkelic acid
- For reviews, see:
-
1a
Vaillancourt V.Pratt NE.Perron F.Albizati KF. The Total Synthesis of Spiroketal-Containing Natural Products, In Total Synthesis of Natural Compounds Vol. 8:ApSimon J. John Wiley and Sons; New York: 2007. -
1b
Aho JE.Pihko PM.Rissa TK. Chem. Rev. 2005, 105: 4406 - 2
Ueno T.Takahashi H.Oda M.Mizunuma M.Yokoyama A.Goto Y.Mizushina M.Sakaguchi K.Hayashi H. Biochemistry 2000, 39: 5995 - 3
Stierle AA.Stierle DB.Kelly K. J. Org. Chem. 2006, 71: 5357 - 4
Fujimoto H.Nozawa M.Okuyama E.Ishibashi M. Chem. Pharm. Bull. 2002, 50: 330 - 5
Buchgraber P.Snaddon TN.Wirtz C.Mynott R.Goddard R.Fürstner A. Angew. Chem. Int. Ed. 2008, 47: 8450 - 6
Wu X.Zhou J.Snider BB. Angew. Chem. Int. Ed. 2009, 48: 1283 - 7
Bray CD. Org. Biomol. Chem. 2008, 6: 2815 - 8
Barluenga J.Mendoza A.Rodríguez F.Fañanás FJ. Angew. Chem. Int. Ed. 2009, 48: 1644 - 9
Liu Y.-C.Sperry J.Rathwell DC.Brimble MA. Synlett 2009, 793 - 10
Kulinkovich OG.Sviridov SV.Vasilevski DA.Pritytskaya TS. J. Org. Chem. USSR (Engl. Transl.) 1989, 25: 2027; Zh. Org. Khim. 1989, 25, 2244 - 11
Kulinkovich OG.Sviridov SV.Vasilevski DA.Savchenko AI.Pritytskaya TS. J. Org. Chem. USSR (Engl. Transl.) 1991, 27: 250 ; Zh. Org. Khim. 1991, 27, 294 -
12a
Lee J.Kang CH.Kim H.Cha JK. J. Am. Chem. Soc. 1996, 118: 291 -
12b
Lee J.Kim H.Cha J. J. Am. Chem. Soc. 1996, 118: 4198 - 13
Kasatkin A.Sato F. Tetrahedron Lett. 1995, 36: 6079 - 14
Kulinkovich OG.Epstein OL.Savchenko AI. Tetrahedron Lett. 1999, 40: 5935 - 15
Keaton KA.Phillips AJ. Org. Lett. 2007, 9: 2717 - 16
Keaton KA.Phillips AJ. Org. Lett. 2008, 10: 1083 - 17
Gollner A.Mulzer J. Org. Lett. 2008, 10: 4701 - 18
Esposito A.Taddei M. J. Org. Chem. 2000, 65: 9245 - 19
Eisch JJ.Adeosun AA.Gitua JN. Eur. J. Org. Chem. 2003, 4721 - 20
Marsault E.Hoveyda HR.Peterson ML.Saint-Louis C.Landry A.Vézina M.Oullet L.Wang Z.Ramaseshan M.Beaubien S.Benakli K.Beauchemin S.Déziel R.Peeters T.Fraser GL. J. Med. Chem. 2006, 49: 7190 - 21
Bruijnincx PCA.Lutz M.Spek AL.Hagen WR.van Koten G.Klein Gebinnk RJM. Inorg. Chem. 2007, 46: 8391 - 22
Cordoba R.Tormo NS.Medarde AF.Plumet J. Bioorg. Med. Chem. 2007, 15: 5300 -
23a
DePuy CH.Van Lanen RJ. J. Org. Chem. 1974, 29: 3360 -
23b
DePuy CH.Breitbeil FW.DeBruin KR.
J. Am. Chem. Soc. 1966, 88: 3347 - 24
Waters SP.Fennie MW.Kozlowski MC. Tetrahedron Lett. 2006, 47: 5409
References and Notes
General Procedure - Kulinkovich
Reaction
A solution of Ti(Oi-Pr)4 (2.16
mmol) in THF (5 mL) was cooled to an internal temperature of -40 ˚C. c-C6H11MgCl (6.49
mmol) was added at such a rate that the internal temperature did
not exceed -35 ˚C. Styrene (0.72 mmol) was
added and the orange-brown suspension stirred for 2 h at -35 ˚C.
Ester (0.72 mmol) was added and the suspension warmed to r.t. whereupon
a brown color developed. After stirring for 1 h, the suspension
was diluted with EtOAc (75 mL) and poured into sat. NH4Cl
solution (75 mL). The emulsion was stirred vigorously for 30 min
then filtered through a pad of Celite®. The
aqueous layer was extracted with EtOAc (3 × 75
mL), then the combined organic phases were dried over MgSO4,
filtered, and the solvent removed in vacuo. The crude product was
purified by flash chromatog-raphy (hexane-EtOAc, 2:1) to
afford the cyclopropanol.
1-[3-(Benzyloxy)propyl]-2-[2-(ethoxymethoxy)-4-methoxyphenyl]cyclopropanol (21)
Yellow oil. R
f
= 0.23
(hexane-EtOAc, 2:1). IR (film): ν = 3440,
2928, 1711, 1610, 1505, 1453, 1360, 1279, 1254, 1199, 1156, 1100,
1075, 996, 842, 736, 689 cm-¹. ¹H
NMR (300 MHz, CDCl3): δ = 0.89
(dd, J = 7.3,
5.7 Hz, 1 H, H-2), 1.12-1.29 (m, 4 H, CH3, H-3),
1.56 (dd, J = 14.4,
7.4 Hz, 2 H, H-1′), 1.70 (quin, J = 6.3
Hz, 2 H, H-2′), 2.30 (dd, J = 9.9, 7.3
Hz, 1 H, H-3), 3.48 (t, J = 5.8
Hz, 2 H, H-3′), 3.74 (q, J = 7.1
Hz, 2 H, OCH
2CH3),
3.78 (s, 3 H, OMe), 4.47 (s, 2 H, OCH2Ph), 5.25 (q, J = 6.3 Hz,
2 H, OCH2O), 6.45 (dd, J = 8.4,
2.5 Hz, 1 H, H-5′), 6.73 (d, J = 2.5
Hz, 1 H, H-3′), 6.79 (d, J = 8.4
Hz, 1 H, H-6′), 7.27-7.34 (m, 5 H, OBn). ¹³C NMR
(75 MHz, CDCl3): δ = 15.1
(CH3), 17.1 (CH2, C-3), 25.9 (CH2,
C-2′), 26.1 (CH, C-2), 31.4 (CH2, C-1′),
55.3 (CH3, OMe), 64.2 (q, C-1), 70.7 (CH2,
OCH2CH3), 72.9 (CH2,
OCH2Ph), 93.4 (CH2, OCH2O), 101.4
(CH, C-4′′), 105.6 (CH, C-5′′),
127.6 (CH, C-6′′), 127.7 (CH, C-2′′′,
C-6′′′),
128.2 (CH, C-4′′′), 128.4 (CH, C-3′′′,
C-5′′′), 148.7 (q, C-1′′,
C-1′′′), 159.0 (q, C-2′′,
C-3′′). MS (EI, 70eV):
m/z (%) = 247
(16), 409 (100) [M+ + Na],
793 (2 M+ + Na]. HRMS (EI): m/z [M+ + Na] calcd
for C23H30NaO5: 409.1991; found:
409.1985.
General Procedure - Ring
Opening of Cyclopropanols
Cyclopropanol (0.34 mmol)
was added to dioxane (3 mL) and 0.2 N NaOH solution (6 mL). The
reaction was stirred at reflux for 3 d, then neutralized to pH 7
with 2 M HCl. The aqueous layer was extracted with Et2O
(5 × 10 mL). The combined organic layers
were dried over MgSO4, filtered, and the solvent removed
in vacuo. The crude product was purified by flash chromatography
(hexane-EtOAc, 4:1) to afford the ketone.
6-(Benzyloxy)-1-[2-(ethoxymethoxy)-4-methoxy-phenyl]hexan-3-one (26)
Yellow oil. R
f
= 0.38
(hexane-EtOAc, 4:1). IR (film): ν = 2927,
1712, 1610, 1587, 1506, 1444, 1361, 1284, 1256, 1199, 1154, 1100,
1077, 997, 842, 737, 698 cm-¹. ¹H
NMR (300 MHz, CDCl3): δ = 1.22
(t, J = 7.1
Hz, 3 H, OCH2CH
3), 1.88
(quin, J = 6.7
Hz, 2 H, H-5), 2.50 (t, J = 7.3
Hz, 2 H, H-4), 2.66 (t, J
A,B = 7.7
Hz, 2 H, H-2), 2.81 (t, J
A,B = 7.4
Hz, 2 H, H-1), 3.46 (t, J = 6.4
Hz, 2 H, H-6), 3.71 (q, J = 7.0
Hz, 2 H, OCH
2CH3),
3.77 (s, 3 H, OMe), 4.47 (s, 2 H, OCH2Ph), 5.22 (s, 2
H, OCH2O), 6.46 (dd, J = 8.3,
2.6 Hz, 1 H, H-5′), 6.70 (d, J = 2.5
Hz, 1 H, H-3′), 7.01 (d, J = 8.0
Hz, 1 H, H-6′). ¹³C NMR (75
MHz, CDCl3): δ = 15.1
(CH3), 23.8 (CH2, C-5), 24.3 (CH2,
C-1), 39.4 (CH2, C-4), 43.2 (CH2, C-2), 55.3
(CH3, OMe), 64.3 (CH2, OCH2CH3),
69.4 (CH2, C-6), 72.8 (CH2, OCH2Ph),
93.1 (CH2, OCH2O), 101.4 (CH, C-3′), 105.8
(CH, C-5′), 127.5 (CH, C-4′′), 127.6
(CH, 2′′, C-6), 128.4 (CH, C-3′′,
C-5′′), 130.1 (q, C-1′), 130.2 (CH, C-6′), 138.7.9
(q, C-1′′), 156.0 (q, C-2′), 159.2 (q,
C-4′), 210.8 (q, C-3). MS (EI, 70eV): m/z (%) = 97
(19), 151 (55), 177 (82), 207 (27), 235 (67), 253 (19), 275 (17),
311 (46), 341 (31), 385 (5) [M+],
409 (100) [M+ + Na].
HRMS (EI): m/z [M+ + Na] calcd
for C23H30NaO5: 409.1991; found:
409.1985.