Subscribe to RSS
DOI: 10.1055/s-0029-1217811
Novel Oxidation Reaction of Tertiary Amines with Osmium Tetroxide
Publication History
Publication Date:
07 August 2009 (online)
![](https://www.thieme-connect.de/media/synlett/200914/lookinside/thumbnails/10.1055-s-0029-1217811-1.jpg)
Abstract
Tertiary amines were oxidized with OsO4 to afford mixtures of lactams, hydroxylactams, and ketolactams. In contrast to RuO4, which was known to oxidize tertiary amines, amides, and N-carbamoylamines, OsO4 oxidized the tertiary amines exclusively and tolerated amides and N-carbamoylamines. A mechanism for the oxidation reaction is also proposed.
Key words
osmium tetroxide - oxidation - tertiary amine - 4,5-epoxymorphinan - opioid
- Supporting Information for this article is available online:
- Supporting Information
-
1a
Schröder M. Chem. Rev. 1980, 80: 187 -
1b
Haines AH. In Methods for the Oxidation of Organic Compounds Academic Press; London: 1985. p.75-84 -
1c
Singh HS. In Organic Syntheses by Oxidation with Metal CompoundsMijis WJ.de Jonge CRHI. Plenum Press; New York: 1986. p.633-693. -
2a
Kolb HC.VanNieuwenhze MS.Sharpless KB. Chem. Rev. 1994, 94: 2483 -
2b
Waldmann H. In Organic Synthesis Highlights II Wiley-VCH; Weinheim: 1995. p.9-18 -
2c
Kolb HC.Sharpless KB. In Transition Metals for Organic Synthesis Vol. 2:Beller M.Bolm C. Wiley-VCH; Weinheim: 2004. p.275-307 -
3a
Maione AM.Romeo A. Synthesis 1984, 955 -
3b
Coleman KS.Coppe M.Thomas C.Osborn JA. Tetrahedron Lett. 1999, 40: 3723 -
3c
Döbler C.Mehltretter GM.Sundermeier U.Eckert M.Militzer H.-C.Beller M. Tetrahedron Lett. 2001, 42: 8447 -
3d
Muldoon J.Brown SN. Org. Lett. 2002, 4: 1043 -
4a
Henbest HB.Khan SA. J. Chem. Soc., Chem. Commun. 1968, 1036 -
4b
Hauser FM.Ellenberger SR.Clardy JC.Bass LS. J. Am. Chem. Soc. 1984, 106: 2458 -
4c
Solladié G.Fréchou C.Demailly G. Tetrahedron Lett. 1986, 27: 2867 -
4d
Kaldor SW.Hammond M. Tetrahedron Lett. 1991, 32: 5043 -
4e
Priebe W.Grynkiewicz G. Tetrahedron Lett. 1991, 32: 7353 -
5a
Schröder M.Griffith WP. J. Chem. Soc., Dalton Trans. 1978, 1599 -
5b
Bassignani L.Brandt A.Caciagli V.Re L. J. Org. Chem. 1978, 43: 4245 -
5c
Hillis LR.Ronald RC. J. Org. Chem. 1985, 50: 470 -
5d
Armstrong A.Gethin DM.Wheelhouse CJ. Synlett 2004, 350 - 6
Gao S.Herzig D.Wang B. Synthesis 2001, 544 -
6a
Cook JW.Schoental R. J. Chem. Soc. 1948, 170 -
6b
Okamoto A.Tainaka K.Kamei T. Org. Biomol. Chem. 2006, 4: 1638 -
6c
Tanaka K.Tainaka K.Okamoto A. Bioorg. Med. Chem. 2007, 15: 1615 -
6d
Umemoto T.Okamoto A. Org. Biomol. Chem. 2008, 6: 269 - Compound 1a:
-
8a
Gates M.Montzka TA. J. Med. Chem. 1964, 7: 127 -
8b
Osa Y.Ida Y.Yano Y.Furuhata K.Nagase H. Heterocycles 2006, 69: 271 -
8c
Fujii H.Osa Y.Ishihara M.Hanamura S.Nemoto T.Nakajima M.Hasebe K.Mochizuki H.Nagase H. Bioorg. Med. Chem. Lett. 2008, 18: 4978 - Compound 1b:
-
9a
Coop A.Janetka JW.Lewis JW.Rice KC. J. Org. Chem. 1998, 63: 4392 -
9b
Carroll RJ.Leisch H.Rochon L.Hudlicky T.Cox DP. J. Org. Chem. 2009, 74: 747 -
10a
Minato M.Yamamoto K.Tsuji J. J. Org. Chem. 1990, 55: 766 -
10b
Kwong H.-L.Sorato C.Ogino Y.Chen H.Sharpless KB. Tetrahedron Lett. 1990, 21: 2999 -
11a
Nan Y.Xu W.Zaw K.Hughes KE.Huang L.-F.Dunn WJ.Bauer L.Bhargava HN. J. Heterocycl. Chem. 1997, 34: 1195 -
11b
Meredith W.Nemeth GA.Boucher R.Carney R.Haas M.Sigvardson K.Teleha CA. Tetrahedron Lett. 2003, 44: 73814 -
11c
Fujii H.Imaide S.Watanabe A.Nemoto T.Nagase H. Tetrahedron Lett. 2008, 49: 6293 - Dihydroxylation of enamines by OsO4 oxidation was reported to occur:
-
12a
Kutney JP.Bylsma F. J. Am. Chem. Soc. 1970, 92: 6090 -
12b
LaLonde RT.Auer E.Wong CF.Muralidharan VP. J. Am. Chem. Soc. 1971, 93: 2501 -
12c
Mangeney P.Andriamialisoa RZ.Lanlois N.Langlois N.Langlois Y.Potier P. J. Am. Chem. Soc. 1979, 101: 2243 - Enamine moieties in indoles were reportedly oxidized with OsO4 to indolinones via dihydroindolines:
-
13a For recent examples,
see:
Sundberg RJ. In The Chemistry of Indoles Academic Press; London: 1970. p.298 -
13b
Kitajima M.Takayama H.Sakai S. J. Chem. Soc., Perkin Trans. 1 1994, 1573 -
13c
Takayama H.Tominaga Y.Kitajima M.Aimi N.Sakai S. J. Org. Chem. 1994, 59: 4381 -
13d
Peterson AC.Cook JM. J. Org. Chem. 1995, 60: 120 -
13e
Wearing XZ.Cook JM. Org. Lett. 2002, 4: 4237 - 16
Nagase H.Abe A.Portoghese PS. J. Org. Chem. 1989, 54: 4120 -
17a
Carlsen PHJ.Katsuki T.Martin VS.Sharpless KB. J. Org. Chem. 1981, 46: 3936 -
17b
Courtney JL. In Organic Syntheses by Oxidation with Metal CompoundsMijis WJ.de Jonge CRHI. Plenum Press; New York: 1986. p.445-467 -
17c
Murahashi S.Komiya N. In Ruthenium in Organic SynthesisMurahashi S. Wiley-VCH; Weinheim: 2004. p.53-93 -
17d
Bernd P. Synthesis 2005, 2453 - TPAP (tetra-n-propylammonium perruthenate) was also used in organic synthesis. See the following reviews:
-
18a
Ley SV. In Comprehensive in Organic Synthesis Vol. 7:Trost BM.Fleming I. Pergamon; Oxford: 1991. p.305-327 -
18b
Griffith WP. Chem. Soc. Rev. 1992, 21: 179 -
18c
Ley SV.Norman J.Griffith WP. Synthesis 1994, 639 -
19a
Sheehan JC.Tulis RW. J. Org. Chem. 1974, 39: 2264 -
19b
Bettoni G.Franchini C.Morlacchi F.Tangari N.Tortorella V. J. Org. Chem. 1976, 41: 2780 -
19c
Yoshifuji S.Tanaka K.Nitta Y. Chem. Pharm. Bull. 1985, 33: 1749 -
19d
Yoshifuji S.Arakawa Y.Nitta Y. Chem. Pharm. Bull. 1985, 33: 5042 -
19e
Yoshifuji S.Tanaka K.Kawai T.Nitta Y. Chem. Pharm. Bull. 1985, 33: 5515 -
19f
Yoshifuji S.Tanaka K.Kawai T.Nitta Y. Chem. Pharm. Bull. 1986, 34: 3873 -
19g
Kaname M.Yoshifuji S.Sashida H. Tetrahedron Lett. 2008, 49: 2786 - 20 Compound 1f:
Horikiri H.Kawamura K. Heterocycles 2004, 63: 865
References and Notes
In the Supporting Information, the deprotonation of osmate ester is discussed in detail.
15Plausible mechanisms to amide 2 and lactam 6 are described in the Supporting Information.
21
Oxidation of Amine
with OsO
4
Stoichiometric Reaction Conditions: Conditions
I
To the solution of amine in pyridine was added OsO4 (3
mol equiv) and stirred at r.t. for the time indicated in Tables
[¹]
and
[²]
. The aqueous solution
of Na2SO3 was added to the reaction mixture
and stirred vigorously at r.t. for several hours. The resulting
mixture was evaporated under reduced pressure and extracted with
CHCl3. The organic layer was washed with brine and dried
over Na2SO4. After removing the solvent under
reduced pressure, the residue was purified by silica gel column
chromatography and/or preparative TLC.
Catalytic Reaction Conditions: Conditions II
Amine
was added to the solution of K3Fe(CN)6 (9
mol equiv), K2CO3 (9 mol equiv), and OsO4 (0.1
mol equiv) in t-BuOH and distilled H2O
(1:1) and stirred at r.t. for the time indicated in Tables
[¹]
and
[²]
. To the reaction mixture
was added the aqueous solution of Na2SO3 and
stirred at r.t. for several hours. The resulting mixture was poured
into distillated H2O and extracted with CHCl3.
The organic layer was dried over Na2SO4 and
concentrated under reduced pressure. The residue was purified by
silica gel column chromatography and/or preparative TLC.
Amide 2a
¹H
NMR (300 MHz, CDCl3): δ = 0.67-1.25
(m, 5 H), 1.44-1.86 (m, 6 H), 1.93-2.02 (m, 0.7
H), 2.07-2.15 (m, 0.3 H), 2.54-2.63 (m, 0.3 H),
2.62 (d, J = 18.3
Hz, 0.7 H), 2.76 (d, J = 18.0
Hz, 0.3 H), 2.90 (dd, J = 5.9,
18.3 Hz, 0.7 H), 3.00 (dd, J = 5.4,
18.0 Hz, 0.3 H), 3.05-3.18 (m, 0.7 H), 3.76-3.93
(m, 2 H), 3.89 (s, 3 H), 3.96-4.09 (m, 1.7 H), 4.14-4.24 (m,
1 H), 4.38-4.47 (m, 0.3 H), 4.49 (s, 1 H), 4.65 (br s,
0.3 H), 5.10-5.16 (m, 0.7 H), 6.64 (br d, J = 8.4
Hz, 1 H), 6.78 (d, J = 8.1
Hz, 1 H). IR (film): 3467, 2947, 1632, 1502, 1437, 1261, 1168, 1017
cm-¹. HRMS-FAB: m/z calcd for C23H28NO5 [M + H]+:
398.1962; found: 398.1976.
Ketolactam 3
¹H
NMR (300 MHz, CDCl3): δ = 1.31-1.58
(m, 2 H), 1.66-1.82 (m, 2 H), 2.63-2.73 (m, 1
H), 2.78-2.96 (m, 2 H), 3.71-4.03 (m, 4 H), 3.87
(s, 3 H), 4.20-4.29 (m, 1 H), 5.42 (s, 1 H), 6.67 (d, J = 8.1 Hz,
1 H), 6.86 (d, J = 8.4
Hz, 1 H), 7.74 (br s, 1 H). IR (film): 1736, 1694 cm-¹.
HRMS-FAB: m/z calcd
for C19H20NO6 [M + H]+:
358.1291; found: 358.1300.
Ketolactam
4a
¹H NMR (300 MHz, CDCl3): δ = 0.28-0.40
(m, 2 H), 0.49-0.69 (m, 2 H), 1.03-1.18 (m, 1
H), 1.35-1.61 (m, 2 H), 1.66-1.86 (m, 2 H), 2.67-2.76
(m, 1 H), 2.78 (dd, J = 4.2,
17.7 Hz, 1 H), 2.93 (dd, J = 6.9,
14.1 Hz, 1 H), 3.04 (dd, J = 1.2,
17.7 Hz, 1 H), 3.75-4.10 (m, 5 H), 3.86 (s, 3 H), 4.21-4.29
(m, 1 H), 5.40 (s, 1 H), 6.65 (d, J = 8.1
Hz, 1 H), 6.84 (d, J = 8.1 Hz,
1 H). IR (film): 2923, 1733, 1670 cm-¹.
HRMS-FAB: m/z calcd
for C23H26NO6 [M + H]+:
412.1760; found: 412.1776.
Hydroxylactam
5a
¹H NMR (300 MHz, CDCl3): δ = 0.21-0.36
(m, 2 H), 0.45-0.65 (m, 2 H), 0.99-1.13 (m, 1
H), 1.17-1.35 (m, 1 H), 1.51-1.77 (m, 3 H), 2.60-2.71
(m, 2 H), 2.76 (dd, J = 7.1,
14.0 Hz, 1 H), 2.89 (br d, J = 17.4
Hz, 1 H), 3.71-4.00 (m, 6 H), 3.87 (s, 3 H), 4.17-4.25
(m, 1 H), 5.17 (s, 1 H), 6.59 (d, J = 8.1 Hz,
1 H), 6.79 (d, J = 8.1
Hz, 1 H). One proton of the OH group was not observed. IR (film):
3294, 2928, 1623, 1503, 1439, 1276, 1194, 1055 cm-¹.
HRMS-FAB: m/z calcd
for C23H28NO6 [M + H]+:
414.1917; found: 414.1896.
Lactam 6a
¹H
NMR (300 MHz, CDCl3): δ = 0.21-0.34
(m, 2 H), 0.45-0.63 (m, 2 H), 0.98-1.12 (m, 1
H), 1.18-1.35 (m, 1 H), 1.52-1.77 (m, 3 H), 2.35
(dt, J = 12.7,
3.7 Hz, 1 H), 2.61 (d, J = 17.1
Hz, 1 H), 2.60-2.77 (m, 2 H), 2.72 (d, J = 17.4
Hz, 1 H), 2.93 (dd, J = 1.2,
17.4 Hz, 1 H), 3.73-3.81 (m, 1 H), 3.84-4.02 (m,
4 H), 3.87 (s, 3 H), 4.20 (dt, J = 5.2,
6.8 Hz, 1 H), 4.49 (s, 1 H), 6.60 (d, J = 8.4
Hz, 1 H), 6.77 (d, J = 8.1 Hz,
1 H). IR (film): 2923, 1635, 1504, 1440 cm-¹.
HRMS-FAB: m/z calcd
for C23H28NO5 [M + H]+:
398.1967; found: 398.1962.
Iminoketone
7
¹H NMR (400 MHz, CDCl3): δ = 1.28-1.41
(m, 1 H), 1.44-1.54 (m, 1 H), 1.68-1.78 (m, 2
H), 2.45 (ddd, J = 3.2,
4.3, 12.3 Hz, 1 H), 2.91 (ddd, J = 0.8,
5.4, 17.9 Hz, 1 H), 2.96 (ddd, J = 0.7,
2.0, 17.8 Hz, 1 H), 3.77-3.82 (m, 1 H), 3.86 (s, 3 H),
3.91 (dt, J = 7.3,
6.5 Hz, 1 H), 4.00 (q, J = 6.6
Hz, 1 H), 4.24 (ddd, J = 5.4,
6.8, 7.1 Hz, 1 H), 4.54 (ddd, J = 1.8,
3.3, 6.7 Hz, 1 H), 5.32 (s, 1 H), 6.66 (d, J = 8.2
Hz, 1 H), 6.84 (d, J = 8.2
Hz, 1 H), 7.70 (d, J = 1.5
Hz, 1 H). IR (film): 2928, 1710, 1606, 1503, 1440, 1279, 1187, 1061
cm-¹. HRMS-FAB: m/z calcd for C19H20NO5 [M + H]+:
342.1341; found: 342.1335.