References and Notes
For examples of atropisomerism and
discussions on the conformational properties of non-biaryl systems,
see:
1a
Clayden J.
Turner H.
Helliwell M.
Moir E.
J. Org. Chem.
2008,
73:
4415
1b
Adler T.
Bonjoch J.
Clayden J.
Font-Bardía M.
Pickworth M.
Solans X.
Solé D.
Vallverdú L.
Org. Biomol. Chem.
2005,
3:
3173
1c
Clayden J.
Worrall CP.
Moran W.
Helliwell M.
Angew. Chem. Int. Ed.
2008,
47:
3234
1d
Betson MS.
Clayden J.
Worrall CP.
Peace S.
Angew.
Chem. Int. Ed.
2006,
45:
5803
1e
Clayden J.
Fletcher SP.
McDouall
JJW.
Rowbottom SJM.
J.
Am. Chem. Soc.
2009,
131:
5331
1f For an overview of this
area, see: Clayden J.
Chem. Commun.
2004,
127
For studies of conformational interconversions
in diarylsulfides and sulfones, see:
2a
Kessler H.
Rieker A.
Rundel W.
Chem.
Commun.
1968,
475
2b
Lam WY.
Martin JC.
J. Org. Chem.
1981,
46:
4458
2c
Grilli S.
Lunazzi L.
Mazzanti A.
J.
Org. Chem.
2001,
4444
2d
Lunazzi L.
Mazzanti A.
Minzoni M.
Tetrahedron
2005,
61:
6782
2e Clayden J., Senior J.,
Helliwell M.; Angew. Chem. Int. Ed.;
in press
3
Kwong FY.
Buchwald SL.
Org. Lett.
2002,
4:
3517
Other recent methods for C-S
bond formation in less hindered systems have been described, see:
4a
Fernandez-Rodriguez M.-A.
Shen O.
Hartwig JF.
J. Am. Chem. Soc.
2006,
128:
2180
4b
Correa A.
Carril M.
Bolm C.
Angew.
Chem. Int. Ed.
2008,
47:
2880
4c
Zhang H.
Cao W.
Ma D.
Synth.
Commun.
2007,
37:
25
4d
Xu HJ.
Zhao XY.
Deng J.
Fu Y.
Feng Y.-S.
Tetrahedron
Lett.
2009,
50:
434
4e
Lee J.-Y.
Lee PH.
J. Org. Chem.
2008,
73:
7413
4f For a review, see: Kondo T.
Mitsudo T.
Chem. Rev.
2000,
100:
3205
For further representative examples, see:
4g
Palomo C.
Oiarbide M.
López R.
Gómez-Bengoa E.
Tetrahedron Lett.
2000,
41:
1283
4h
Herradura PS.
Pendola KA.
Guy RK.
Org. Lett.
2000,
2:
2019
4i
McWilliams JC.
Fleitz FJ.
Zheng N.
Armstrong JD.
Org.
Synth.
2002,
79:
43
4j
Li GY.
Angew.
Chem. Int. Ed.
2001,
40:
1513
4k
Li GY.
J.
Org. Chem.
2002,
67:
3643
4l
Schopfer U.
Schlapbach A.
Tetrahedron
2001,
57:
3069
4m
Bates CG.
Gujadhur
RK.
Venkataraman D.
Org. Lett.
2002,
4:
2803
4n Only one previous report,
a coupling method employing HMPA as solvent, addresses a 2,2′,6,6′-tetraalkyl
diarylsulfide, see: Fujihara H.
Chiu J.
Furukawa N.
J. Am.
Chem. Soc.
1988,
110:
1280
For recent reviews of directed lithiation,
see:
5a
Clayden J.
Organolithiums: Selectivity for Synthesis
Pergamon;
Oxford:
2002.
5b
Clayden J.
Directed Metallation of Aromatic Compounds. In Chemistry of Organolithium Compounds
Vol.
1:
Rappoport Z.
Marek I.
Wiley;
Chichester:
2004.
p.495
5c
Whisler MC.
MacNeil S.
Snieckus V.
Beak P.
Angew. Chem.
Int. Ed.
2004,
43:
2206
6
Clayden J.
Cooney JJA.
Julia M.
J. Chem. Soc., Perkin Trans. 1
1995,
7
7
Iwao M.
Iihama T.
Mahalanabis KK.
Perrier H.
Snieckus V.
J.
Org. Chem.
1989,
54:
24
8
Krizan TD.
Martin JC.
J. Am. Chem. Soc.
1983,
105:
6155
9
Betson MS.
Clayden J.
Synlett
2006,
745
10
Pinchart A.
Dallaire C.
Van Bierbeek A.
Gingras M.
Tetrahedron Lett.
1999,
5479
11
Kimura S.
Bill E.
Bothe E.
Weyhermller T.
Wieghardt K.
J. Am.
Chem. Soc.
2001,
123:
6025
12
Stavber S.
Kralj P.
Zupan M.
Synthesis
2002,
1513
13 For examples of selectivity of I
over Br in related reactions, see: Deng W.
Zou Y.
Wang Y.-F.
Liu L.
Guo Q.-X.
Synlett
2004,
1254
14 Copper-Promoted Coupling; Typical
Procedure for (2,4-Di-tert-butyl-6-bromophenyl)-(2,4-di-tert-butyl-6-methylphenyl)
sulfane
(20b)
Thiophenol 18a (574 mg), copper(I) iodide (462 mg)
and potassium carbonate (560 mg) were charged to a flask fitted with
a reflux condenser, which was evacuated/back-filled with
nitrogen (×3). A solution of iodide 19c (800
mg) and ethylene glycol (0.23 mL) in tert-amyl
alcohol (6 mL) was added via syringe and the reaction mixture was
heated to reflux for 24 h. The reaction mixture was allowed to cool
to r.t., diluted with ethyl acetate (40 mL) and filtered through
a glass sinter. The filtrate was washed with water (3 × 50
mL) and brine (50 mL), dried over MgSO4 and the solvents
were removed under reduced pressure. The crude product was purified
by flash chromatography (petroleum ether) to yield the title compound
as a white solid that was recrystallised from acetone (1.27 g, 76%);
mp 125-129 ˚C(acetone); R
f
= 0.69 (petroleum ether); ¹H
NMR (400 MHz, CDCl3): δ = 7.45 (d, J = 2 Hz, 1 H, ArH),
7.36 (d, J = 2 Hz, 1 H,
ArH), 7.33 (d, J = 2 Hz, 1 H,
ArH), 6.93 (d, J = 2 Hz, 1 H,
ArH), 1.75 (s, 3 H, ArCH
3
), 1.65 (s, 9 H, CMe3),
1.64 (s, 9 H, CMe3), 1.30 (s, 9 H,
CMe3), 1.28 (s, 9 H, CMe3); ¹³C
NMR (100 MHz, CDCl3): δ = 150.8, 150.2,
149.0, 148.5, 139.0, 133.1, 131.8, 129.7, 127.0, 126.1, 123.6, 122.5,
38.3, 37.5, 34.7, 34.5, 31.3, 31.3, 31.1, 30.9, 23.0; MS (CI): m/z (%) = 502
(40) [79Br M]+,
504 (40) [8¹Br M]+,
503 (50) [79BrM + H]+,
505 (50) [8¹BrM + H]+;
HRMS: m/z calcd
for C29H43BrS: 502.2263; found: 502.2264.