RSS-Feed abonnieren
DOI: 10.1055/s-0029-1217986
Synthesis of 2,2′,6-Trisubstituted and 2,2′,6,6′-Tetrasubstituted Diaryl Sulfides and Diaryl Sulfones by Copper-Promoted Coupling and/or Ortholithiation
Publikationsverlauf
Publikationsdatum:
24. September 2009 (online)
Abstract
Stoichiometric copper(I) iodide, in the presence of potassium carbonate and ethylene glycol, promotes the coupling of even highly sterically encumbered 2,6-disubstituted thiophenols and aryl iodides to form hindered diarylsulfides. Hindered diarylsulfones may be made in a complementary fashion by ortholithiation of the sulfone oxidation products of less hindered diarylsulfides.
Key words
copper - Ullmann - coupling - sulfide - sulfone - lithiation
- For examples of atropisomerism and discussions on the conformational properties of non-biaryl systems, see:
 - 1a 
             
            
Clayden J.Turner H.Helliwell M.Moir E. J. Org. Chem. 2008, 73: 4415 - 1b 
             
            
Adler T.Bonjoch J.Clayden J.Font-Bardía M.Pickworth M.Solans X.Solé D.Vallverdú L. Org. Biomol. Chem. 2005, 3: 3173 - 1c 
             
            
Clayden J.Worrall CP.Moran W.Helliwell M. Angew. Chem. Int. Ed. 2008, 47: 3234 - 1d 
             
            
Betson MS.Clayden J.Worrall CP.Peace S. Angew. Chem. Int. Ed. 2006, 45: 5803 - 1e 
             
            
Clayden J.Fletcher SP.McDouall JJW.Rowbottom SJM. J. Am. Chem. Soc. 2009, 131: 5331 - 1f For an overview of this
            area, see:  
            
Clayden J. Chem. Commun. 2004, 127 - For studies of conformational interconversions in diarylsulfides and sulfones, see:
 - 2a 
             
            
Kessler H.Rieker A.Rundel W. Chem. Commun. 1968, 475 - 2b 
             
            
Lam WY.Martin JC. J. Org. Chem. 1981, 46: 4458 - 2c 
             
            
Grilli S.Lunazzi L.Mazzanti A. J. Org. Chem. 2001, 4444 - 2d 
             
            
Lunazzi L.Mazzanti A.Minzoni M. Tetrahedron 2005, 61: 6782 - 2e  
            
Clayden J., Senior J., Helliwell M.; Angew. Chem. Int. Ed.; in press
 - 3 
             
            
Kwong FY.Buchwald SL. Org. Lett. 2002, 4: 3517 - Other recent methods for C-S bond formation in less hindered systems have been described, see:
 - 4a 
             
            
Fernandez-Rodriguez M.-A.Shen O.Hartwig JF. J. Am. Chem. Soc. 2006, 128: 2180 - 4b 
             
            
Correa A.Carril M.Bolm C. Angew. Chem. Int. Ed. 2008, 47: 2880 - 4c 
             
            
Zhang H.Cao W.Ma D. Synth. Commun. 2007, 37: 25 - 4d 
             
            
Xu HJ.Zhao XY.Deng J.Fu Y.Feng Y.-S. Tetrahedron Lett. 2009, 50: 434 - 4e 
             
            
Lee J.-Y.Lee PH. J. Org. Chem. 2008, 73: 7413 - 4f For a review, see:  
            
Kondo T.Mitsudo T. Chem. Rev. 2000, 100: 3205 - For further representative examples, see:
 - 4g 
             
            
Palomo C.Oiarbide M.López R.Gómez-Bengoa E. Tetrahedron Lett. 2000, 41: 1283 - 4h 
             
            
Herradura PS.Pendola KA.Guy RK. Org. Lett. 2000, 2: 2019 - 4i 
             
            
McWilliams JC.Fleitz FJ.Zheng N.Armstrong JD. Org. Synth. 2002, 79: 43 - 4j 
             
            
Li GY. Angew. Chem. Int. Ed. 2001, 40: 1513 - 4k 
             
            
Li GY. J. Org. Chem. 2002, 67: 3643 - 4l 
             
            
Schopfer U.Schlapbach A. Tetrahedron 2001, 57: 3069 - 4m 
             
            
Bates CG.Gujadhur RK.Venkataraman D. Org. Lett. 2002, 4: 2803 - 4n Only one previous report,
            a coupling method employing HMPA as solvent, addresses a 2,2′,6,6′-tetraalkyl
            diarylsulfide, see:  
            
Fujihara H.Chiu J.Furukawa N. J. Am. Chem. Soc. 1988, 110: 1280 - For recent reviews of directed lithiation, see:
 - 5a 
             
            
Clayden J. Organolithiums: Selectivity for Synthesis Pergamon; Oxford: 2002. - 5b 
             
            
Clayden J. Directed Metallation of Aromatic Compounds. In Chemistry of Organolithium Compounds Vol. 1:Rappoport Z.Marek I. Wiley; Chichester: 2004. p.495 - 5c 
             
            
Whisler MC.MacNeil S.Snieckus V.Beak P. Angew. Chem. Int. Ed. 2004, 43: 2206 - 6 
             
            
Clayden J.Cooney JJA.Julia M. J. Chem. Soc., Perkin Trans. 1 1995, 7 - 7 
             
            
Iwao M.Iihama T.Mahalanabis KK.Perrier H.Snieckus V. J. Org. Chem. 1989, 54: 24 - 8 
             
            
Krizan TD.Martin JC. J. Am. Chem. Soc. 1983, 105: 6155 - 9 
             
            
Betson MS.Clayden J. Synlett 2006, 745 - 10 
             
            
Pinchart A.Dallaire C.Van Bierbeek A.Gingras M. Tetrahedron Lett. 1999, 5479 - 11 
             
            
Kimura S.Bill E.Bothe E.Weyhermller T.Wieghardt K. J. Am. Chem. Soc. 2001, 123: 6025 - 12 
             
            
Stavber S.Kralj P.Zupan M. Synthesis 2002, 1513 - 13 For examples of selectivity of I
            over Br in related reactions, see:  
            
Deng W.Zou Y.Wang Y.-F.Liu L.Guo Q.-X. Synlett 2004, 1254 
References and Notes
Copper-Promoted Coupling; Typical
         Procedure for (2,4-Di-tert-butyl-6-bromophenyl)-(2,4-di-tert-butyl-6-methylphenyl)
sulfane
         (20b)
            
            Thiophenol 18a (574 mg), copper(I) iodide (462 mg)
         and potassium carbonate (560 mg) were charged to a flask fitted with
         a reflux condenser, which was evacuated/back-filled with
         nitrogen (×3). A solution of iodide 19c (800
         mg) and ethylene glycol (0.23 mL) in tert-amyl
         alcohol (6 mL) was added via syringe and the reaction mixture was
         heated to reflux for 24 h. The reaction mixture was allowed to cool
         to r.t., diluted with ethyl acetate (40 mL) and filtered through
         a glass sinter. The filtrate was washed with water (3 × 50
         mL) and brine (50 mL), dried over MgSO4 and the solvents
         were removed under reduced pressure. The crude product was purified
         by flash chromatography (petroleum ether) to yield the title compound
         as a white solid that was recrystallised from acetone (1.27 g, 76%);
         mp 125-129 ˚C(acetone); R
         
            f
             = 0.69 (petroleum ether); ¹H
         NMR (400 MHz, CDCl3): δ = 7.45 (d, J = 2 Hz, 1 H, ArH),
         7.36 (d, J = 2 Hz, 1 H,
         ArH), 7.33 (d, J = 2 Hz, 1 H,
         ArH), 6.93 (d, J = 2 Hz, 1 H,
         ArH), 1.75 (s, 3 H, ArCH
         
            3
            ), 1.65 (s, 9 H, CMe3),
         1.64 (s, 9 H, CMe3), 1.30 (s, 9 H,
         CMe3), 1.28 (s, 9 H, CMe3); ¹³C
         NMR (100 MHz, CDCl3): δ = 150.8, 150.2,
         149.0, 148.5, 139.0, 133.1, 131.8, 129.7, 127.0, 126.1, 123.6, 122.5,
         38.3, 37.5, 34.7, 34.5, 31.3, 31.3, 31.1, 30.9, 23.0; MS (CI): m/z (%) = 502
         (40) [79Br M]+,
         504 (40) [8¹Br M]+,
         503 (50) [79BrM + H]+,
         505 (50) [8¹BrM + H]+;
         HRMS: m/z calcd
         for C29H43BrS: 502.2263; found: 502.2264.