Synlett 2009(17): 2783-2788  
DOI: 10.1055/s-0029-1217990
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Recyclable Nano Copper Oxide Catalyzed Stereoselective Synthesis of Vinyl Sulfides under Ligand-Free Conditions

Vutukuri Prakash Reddy, Kokkirala Swapna, Akkilagunta Vijay Kumar, Kakulapati Rama Rao*
Organic Chemistry Divison-I, Indian Institute of Chemical Technology, Hyderabad-500 607, India
e-Mail: kakulapatirama@gmail.com;
Further Information

Publication History

Received 3 June 2009
Publication Date:
24 September 2009 (online)

Abstract

A simple and efficient protocol for the cross-coupling of vinyl halides with thiols catalyzed by recyclable CuO nanoparticles under ligand-free conditions is reported. This methodology results in the synthesis of a variety of vinyl sulfides in excellent yields with retention of stereochemistry.

    References and Notes

  • 1a Ceruti M. Balliano G. Rocco F. Milla P. Arpicco S. Cattel L. Viola F. Lipids  2001,  36:  629 
  • 1b Lam HW. Cooke PA. Pattenden G. Bandaranayake WM. Wickramasinghe WA. J. Chem. Soc., Perkin Trans. 1  1999,  847 
  • 1c Johannesson P. Lindeberg G. Johansson A. Nikiforovich GV. Gogoll A. Synnergren B. Le Greves M. Nyberg F. Karlen A. Hallberg A. J. Med. Chem.  2002,  45:  1767 
  • 1d Morimoto K. Tsuji K. Iio T. Miyata N. Uchida A. Osawa R. Kitsutaka H. Takahashi A. Carcinogenesis  1991,  12:  703 
  • 1e Marcantoni E. Massaccesi M. Bartoli MP. Bellucci MC. Bosco M. Sambri L. J. Org. Chem.  2000,  65:  4553 
  • 1f Monte A, Kabir Shahjahan M, Cook JM, Rott M, Schwan WR, and Defoe L. inventors; U.S. Pat. Appl. Publ.  37. 
  • 2 Trost BM. Lavoie AC. J. Am. Chem. Soc.  1983,  105:  5075 
  • 3 Miller RD. Hassig R. Tetrahedron Lett.  1985,  26:  2395 
  • 4 Morris TH. Smith EH. Walsh R. Chem. Commun.  1987,  964 
  • 5 Magnus P. Quagliato D. J. Org. Chem.  1985,  50:  1621 
  • 6a Mizuno H. Domon K. Masuya K. Tanino K. Kuwajima I. J. Org. Chem.  1999,  64:  2648 
  • 6b Domon KMK. Masuya K. Tanino K. Kuwajima I. Synlett  1996,  157 
  • 7 Bates CG. Saejueng P. Doherty MQ. Venkataraman D. Org. Lett.  2004,  6:  5005 
  • 8a Aucagne V. Tatibouet A. Rollin P. Tetrahedron  2004,  60:  1817 
  • 8b Benati L. Capella L. Montevecchi PC. Spagnolo P. J. Chem. Soc., Perkin Trans. 1  1995,  1035 
  • 8c Benati L. Montevecchi PC. Spagnolo P. J. Chem. Soc., Perkin Trans. 1  1991,  2103 
  • 8d Mikolajczak M. Grzejszczak S. Midura W. Zatorski A. Synthesis  1975,  278 
  • 9a Ogawa A. Ikeda T. Kimura K. Hirao T. J. Am. Chem. Soc.  1999,  121:  5108 
  • 9b Koelle U. Rietmann C. Tjoe J. Wagner T. Englert U. Organometallics  1995,  14:  703 
  • 9c Sugoh K. Kuniyasu H. Sugae T. Ohtaka A. Takai Y. Tanaka A. Machino C. Kambe N. Kurosawa H.
    J. Am. Chem. Soc.  2001,  123:  5108 
  • 9d Kuniyasu H. Ogawa A. Sato KI. Ryu I. Kambe N. Sonoda N. J. Am. Chem. Soc.  1992,  114:  5902 
  • 9e Mcdonald JW. Corbin JL. Newton WE. Inorg. Chem.  1976,  15:  2056 
  • 10 Zyk NV. Beloglazkina EK. Belova MA. Dubinina NS. Russ. Chem. Rev.  2003,  72:  769 ; and references cited therein
  • 11a Murahashi SI. Yamamura M. Yanagisawa K. Mita N. Kondo K. J. Org. Chem.  1979,  44:  2408 
  • 11b Carpita A. Rossi R. Scamuzzi B. Tetrahedron Lett.  1989,  30:  2699 
  • 11c Cristau HJ. Chabaud B. Labaudiniere R. Christol H. J. Org. Chem.  1986,  51:  875 
  • 12a Beauchemin A. Gareau Y. Phosphorus, Sulfur Silicon Relat. Elem.  1998,  139:  187 
  • 12b Stephan E. Olaru A. Jaouen G. Tetrahedron Lett.  1999,  40:  8571 
  • 12c Ishida M. Iwata T. Yokoi M. Kaga K. Kato S. Synthesis  1985,  632 
  • 12d Backvall JE. Ericsson A. J. Org. Chem.  1994,  59:  5850 
  • 13 Kabir MS. Van Linn ML. Monte A. Cook JM. Org. Lett.  2008,  10:  3363 
  • 14a Pacchioni G. Surf. Rev. Lett.  2000,  7:  277 
  • 14b Knight WD. Clemenger K. de Heer WA. Saunders WAM. Chou Y. Cohen ML. Phys. Rev. Lett.  1984,  52:  2141 
  • 14c Kaldor A. Cox D. Zakin MR. Adv. Chem. Phys.  1988,  70:  211 
  • 15a Reddy VP. Kumar AV. Swapna K. Rao KR. Org. Lett.  2009,  11:  951 
  • 15b Reddy VP. Kumar AV. Swapna K. Rao KR. Org. Lett.  2009,  11:  1697 
16

CuO nanoparticles (mean particle size: 33 nm; surface area: 29 m²/g and purity: 99.99%) were purchased from Sigma-Aldrich. Analytical thin layer chromatography (TLC) was carried out using silica gel 60 F254 pre-coated plates. Visualization was accomplished with a UV lamp or I2 stain. ¹H and ¹³C NMR were recorded on 200 and 300 MHz instruments, in CDCl3 using TMS as the internal standard, chemical shifts (δ) are reported in parts per million(ppm) downfield from tetramethylsilane. Melting points were determined on a Fischer-Johns melting point apparatus. Centrifugation was carried out using Kubota centrifuge (model 3500), for 1 h at 15000 rpm.
Synthesis of Vinyl Sulfides; Typical Procedure: To a stirred solution of trans-β-iodostyrene (1.0 mmol) and benzenethiol (1.0 mmol) in anhydrous DMSO (2.0 mL) at r.t., was added CuO nanoparticles (1.5 mol%) followed by KOH (1.5 equiv) and heated at 80 ˚C for 4 h. The progress of the reaction was monitored by TLC. After the reaction was complete, the reaction mixture was allowed to cool, and a 1:1 mixture of ethyl acetate-water (20 mL) was added and CuO was removed by centrifuging for 1 h at 15000 rpm. The combined organic extracts were dried with anhydrous Na2SO4. The solvent and volatiles were completely removed under vacuum to give the crude product, which was purified by column chromatography (petroleum ether-ethyl acetate, 99:1) to yield the expected product 1a (205.71 mg, 97% yield) as a colorless oil. The identity and purity of the product was confirmed by ¹H and ¹³C NMR spectroscopic analysis.
Synthesis of Vinyl Iodides; Typical Procedure:
To a solution of trans-2-phenyl vinylboronic acid (1.0 mmol) in MeCN (6 mL), which was protected from light, was added N-iodosuccinimide (1.2 mmol). After stirring for 2 h at r.t., the product was extracted with ethyl acetate (3 × 30 mL), washed with aqueous Na2S2O5 (2 × 20 mL), water (2 × 20 mL), and dried (MgSO4). Solvent evaporation in vacuo and purification by flash column chromatography afforded the vinyl iodides.
Synthesis of Vinyl Bromides; General Procedure: α,β-Unsaturated carboxylic acid (2 mmol) was added to a solution of LiOAc (0.2 mmol) in MeCN-H2O (97:3 v/v, 4.5 mL). After the mixture was stirred for 5 min at room temperature, N-bromosuccinimide (2.1 mmol) was added as a solid. The progress of the reaction was monitored by TLC. After completion of the reaction, the product was extracted with ethyl acetate (3 × 30 mL), washed with aqueous Na2S2O5 (2 × 20 mL), water (2 × 20 mL), and dried (MgSO4). Solvent evaporation in vacuo and purification by flash column chromatography afforded the vinyl bromides.
Recycling of the Catalyst:
After the reaction was complete, the reaction mixture was allowed to cool, and a 1:1 mixture of ethyl acetate-water (2.0 mL) was added and CuO was removed by centrifu-gation. After each cycle, the catalyst was recovered by simple centrifugation, washing with deionized water and ethyl acetate and then drying in vacuo. The recovered nano-CuO was used directly in the next cycle.
Demonstration of Heterogeneous Catalysis:
To a stirred solution of trans-β-iodostyrene (1.0 mmol) and benzenethiol (1.0 mmol) in anhydrous DMSO (2.0 mL) at r.t., was added CuO nanoparticles (1.5 mol%) followed by KOH (1.5 equiv) and the mixture was heated at 80 ˚C for 1.5 h. The reaction mixture was allowed to cool and the catalyst was separated via centrifugation and 0.5 mL of the reaction mixture was worked-up. The ¹H NMR spectrum of the reaction mass indicated 50% product formation. This filtrate obtained after the catalyst separation was further stirred for 2.5 h at 80 ˚C and the reaction mixture was worked-up. No further progress of the reaction was observed as seen by ¹H NMR spectroscopy and the product remained at 50% only. This experiment clearly demonstrated that no leaching of
the catalyst was taking place and that the reaction was heterogeneous. TEM images of the catalyst indicated no change before and after the reaction, which further confirms the heterogeneous nature of the catalyst (Figure  [¹] a and b).
( E )-(4-Methoxyphenyl)(styryl)sulfane (Table 4, entry 3): White solid; mp 58-60 ˚C; IR (KBr): 3055, 2953, 1598, 1415, 1232, 957, 742 cm; ¹H NMR (300 MHz, CDCl3, TMS): δ = 7.35 (d, J = 8.87 Hz, 2 H), 7.28-7.09 (m, 5 H), 6.84 (d, J = 8.87 Hz, 2 H), 6.75 (d, J = 15.48 Hz, 1 H), 6.44 (d, J = 15.48 Hz, 1 H), 3.80 (s, 3 H); ¹³C NMR (100 MHz, CDCl3, TMS): δ = 159.4, 136.6, 133.3, 130.0, 128.8, 128.5, 127.1, 124.4, 114.8, 114.5, 55.2; MS (ESI): m/z = 265 [M + Na]; Anal. Calcd for C15H14OS: C, 74.34; H, 5.82; S, 13.23. Found: C, 74.28; H, 5.76; S, 13.17. ( E )-(4-Fluorostyryl)(naphthalen-2-yl)sulfane (Table 4, entry 6): White solid; mp 101-103 ˚C; IR (KBr): 3049, 2992, 1602, 1453, 1274, 954, 739 cm; ¹H NMR (200 MHz, CDCl3, TMS): δ = 7.81-7.72 (m, 4 H), 7.52-7.40 (m, 3 H), 7.32-7.24 (m, 2 H), 6.97 (t, J = 8.30 Hz, 2 H), 6.86 (d, J = 15.86 Hz, 1 H), 6.68 (d, J = 15.86 Hz, 1 H); ¹³C NMR (100 MHz, CDCl3, TMS): δ = 163, 133.8, 132.7, 132.4, 132.2, 130.9, 128.8, 128.2, 127.8, 127.6, 127.5, 127.3, 126.7, 126.2, 122.9, 115.8, 115.5; MS (ESI): m/z = 303 [M + Na]; Anal. Calcd for C18H13FS: C, 77.11; H, 4.67; S, 11.44. Found: C, 77.01; H, 4.58; S, 11.36. ( E )-[2-(Biphenyl-4-yl)vinyl](naphthalen-2-yl)sulfane (Table 4, entry 7): Yellow solid; mp 138-140 ˚C; IR (KBr): 3059, 2987, 1653, 1471, 1201, 944, 759 cm; ¹H NMR (300 MHz, CDCl3, TMS): δ = 7.83 (s, 1 H), 7.75 (t, J = 8.68 Hz, 3 H), 7.60-7.36 (m, 11 H), 7.31-7.23 (m, 1 H), 6.97 (d, J = 15.48 Hz, 1 H), 6.77 (d, J = 15.48 Hz, 1 H); ¹³C NMR (100 MHz, CDCl3, TMS): δ = 140.5, 140.3, 135.5, 133.7, 132.5, 132.2, 131.6, 128.7, 128.2, 127.7, 127.6, 127.3, 126.8, 126.7, 126.4, 126.1, 123.2; MS (ESI): m/z = 361 [M + Na]; Anal. Calcd for C24H18S: C, 85.17; H, 5.36; S, 9.47. Found: C, 85.11; H, 5.28; S, 9.39. ( Z )-Ethyl 3-(4-Chlorophenylthio)acrylate (Table 6, entry 2): Yellow solid; mp 64-65 ˚C; IR (KBr): 3056, 2925, 1702, 1577, 1214, 959, 744 cm; ¹H NMR (200 MHz, CDCl3, TMS): δ = 7.39 (d, J = 8.49 Hz, 2 H), 7.31 (d, J = 8.49 Hz, 2 H), 7.11 (d, J = 10.00 Hz, 1 H), 5.89 (d, J = 10.00 Hz, 1 H), 4.21 (q, J = 6.98 Hz, 2 H), 1.33 (t, J = 7.17 Hz, 3 H); ¹³C NMR (100 MHz, CDCl3, TMS): δ = 166.3, 148.8, 134.5, 134.4, 132.2, 129.4, 113.7, 60.3, 14.2; MS (ESI): m/z = 265 [M + Na]; Anal. Calcd for C11H11ClO2S: C, 54.43; H, 4.57; S, 13.21. Found: C, 54.37; H, 4.49; S, 13.15.

Figure 1 TEM images of (a) fresh nano-CuO particles and (b) nano-CuO particles after the fourth reaction cycle