Subscribe to RSS
DOI: 10.1055/s-0029-1218013
Thieme Journal Awardees - Where Are They Now? On Cobalt-Catalyzed Biaryl Coupling Reactions
Publication History
Publication Date:
08 October 2009 (online)
Abstract
An operationally simple biaryl coupling reaction has been developed. The underlying domino process involves in situ Grignard formation from aryl bromides and subsequent homocoupling with catalytic CoCl2 and 1 bar synthetic air as terminal oxidant.
Key words
domino reactions - cross-coupling - Grignard reactions - biaryls - dimerizations
- Supporting Information for this article is available online:
- Supporting Information
-
1a
Cepanec I. Synthesis of Biaryls Elsevier; Oxford: 2004. -
1b
Pu L. Chem. Rev. 1998, 98: 2405 -
1c
Bringmann G.Price Mortimer AJ.Keller PA.Gresser MJ.Garner J.Breuning M. Angew. Chem. Int. Ed. 2005, 44: 5384 ; Angew. Chem. 2005, 117, 5518 -
1d
Kirsch P.Bremer M. Angew. Chem. Int. Ed. 2000, 39: 4216 ; Angew. Chem. 2000, 112, 4384 -
2a
Metal-Catalyzed Cross-Coupling Reactions
2nd
ed.:
de Meijere A.Diederich F. Wiley-VCH; Weinheim: 2004. -
2b
Hassan J.Svignon M.Gozzi C.Schulz E.Lemaire M. Chem. Rev. 2002, 102: 1359 -
2c
Nicolaou KC.Bulger PG.Sarlah D. Angew. Chem. Int. Ed. 2005, 44: 4442 ; Angew. Chem. 2005, 117, 4516 -
2d
Zapf A.Beller M. Top. Catal. 2002, 19: 101 -
3a
Miyaura N.Suzuki A. Chem. Rev. 1995, 95: 2457 -
3b
Molander GA.Ellis N. Acc. Chem. Res. 2007, 40: 275 - 4
Farina V.Krishnamurthy V.Scott WJ. Org. React. 1997, 50: 1 - 5
Negishi E. Acc. Chem. Res. 1982, 15: 340 - Selected examples for aryl-aryl coupling reactions using Grignard reagents:
-
6a
Tamao K.Sumitani K.Kumada M. J. Am. Chem. Soc. 1972, 94: 4374 -
6b
Corriu RJP.Masse JP. J. Chem. Soc., Chem. Commun. 1972, 144 -
6c
Martin R.Buchwald SL. J. Am. Chem. Soc. 2007, 129: 3844 -
6d
Hartmann CE.Nolan SP.Cazin CSJ. Organometallics 2009, 28: 2915 -
6e
Korn TJ.Schade MA.Wirth S.Knochel P. Org. Lett. 2006, 8: 725 -
6f
Sapountzis I.Lin W.Kofink CC.Despotopoulou C.Knochel P. Angew. Chem. Int. Ed. 2005, 44: 1654 ; Angew. Chem. 2005, 117, 1682 - For recent reviews, see:
-
7a
Alberico D.Scott ME.Lautens M. Chem. Rev. 2007, 107: 174 -
7b
Seregin IV.Gevorgyan V. Chem. Soc. Rev. 2007, 36: 1173 - Selected recent examples:
-
7c
Lewis JC.Bergman RG.Ellman JA. Acc. Chem. Res. 2008, 41: 1013 -
7d
Join B.Yamamoto T.Itami K. Angew. Chem. Int. Ed. 2009, 48: 3644 ; Angew. Chem. 2009, 121, 3698 - For recent catalyst-free protocols, see:
-
8a
Krasovskiy A.Tishkov A.del Amo V.Mayr H.Knochel P. Angew. Chem. Int. Ed. 2006, 45: 5010 ; Angew. Chem. 2006, 118, 5132 -
8b
Maji MS.Pfeifer T.Studer A. Angew. Chem. Int. Ed. 2008, 47: 9547 ; Angew. Chem. 2008, 120, 9690 - Selected examples:
-
9a
Tsou TT.Kochi JK. J. Am. Chem. Soc. 1979, 101: 7547 -
9b
Yoshida H.Yamaryo Y.Ohshita J.Kunai A. Tetrahedron Lett. 2003, 44: 1541 -
9c
Adamo C.Amatore C.Ciofini I.Jutand A.Lakmini H. J. Am. Chem. Soc. 2006, 128: 6829 -
9d
Liégault B.Lee D.Huestis MP.Stuart DR.Fagnou K. J. Org. Chem. 2008, 73: 5022 -
11a
Handbook on the Toxicology of Metals
Friberg L.Nordberg GF.Vouk VB. Elsevier; Amsterdam: 1986. -
11b
Nickel
and the Skin: Absorption, Immunology, Epidemiology, and Metallurgy
Hostynek JJ.Maibach HI. CRC Press; Boca Raton: 2002. - 12
Kharasch MS.Fields EK. J. Am. Chem. Soc. 1941, 63: 2316 -
13a
Gilman H.Lichtenwalter M. J. Am. Chem. Soc. 1939, 61: 957 -
13b
Wittig G.Bickelhaupt F. Chem. Ber. 1958, 91: 883 -
13c
Wittig G.Klar G. Justus Liebigs Ann. Chem. 1967, 704: 91 - Selected examples:
-
14a
Moncomble A.Le Floch P.Gosmini C. Chem. Eur. J. 2009, 15: 4770 -
14b
Amatore M.Gosmini C. Angew. Chem. Int. Ed. 2008, 47: 2089 ; Angew. Chem. 2008, 120, 2119 - Recent examples:
-
15a
Zhou Z.Xue W. J. Organomet. Chem. 2009, 694: 599 -
15b
Cahiez G.Moyeux A.Buendia J.Duplais C. J. Am. Chem. Soc. 2007, 129: 13788 -
16a For
a recent review, see:
Czaplik WM.Mayer M.Cvengroš J.Jacobi von Wangelin A. ChemSusChem 2009, 2: 396 - Selected recent examples:
-
16b
Nagano T.Hayashi T. Org. Lett. 2005, 7: 491 -
16c
Cahiez G.Chaboche C.Mahuteau-Betzer F.Ahr M. Org. Lett. 2005, 7: 1943 -
16d
Liu W.Lei A. Tetrahedron Lett. 2008, 49: 610 -
17a
Porter CW.Steel C. J. Am. Chem. Soc. 1920, 42: 2650 -
17b
Davies AG.Roberts BP. Acc. Chem. Res. 1972, 5: 387 - 18 For a related direct aryl-alkyl
cross-coupling, see:
Czaplik WM.Mayer M.Jacobi von Wangelin A. Angew. Chem. Int. Ed. 2009, 48: 607 ; Angew. Chem. 2009, 121, 616 - For nucleophilic substitutions of Ar-F with Grignard compounds, see for example:
-
20a
Yoshikai N.Matsuda H.Nakamura E. J. Am. Chem. Soc. 2009, 131: 9590 -
20b
Yoshikai N.Mashima H.Nakamura E. J. Am. Chem. Soc. 2005, 127: 17978 -
20c
Böhm VPW.Gstöttmayr CWK.Weskamp T.Herrmann WA. Angew. Chem. Int. Ed. 2001, 40: 3387 ; Angew. Chem. 2001, 113, 3500 - 21
Lee J.-S.Velarde-Ortiz R.Guijarro A.Wurst JR.Rieke RD. J. Org. Chem. 2000, 65: 5428 - 22
Cahiez G.Duplais C.Buendia J. Angew. Chem. Int. Ed. 2009, 48: 6731 ; Angew. Chem. 2009, 121, 6859
References and Notes
The current world market prices of palladium (370 USD/oz) and nickel (14.4 USD/lb) are expected to increase due to the request from emerging countries such as China, Russia, India, and Brazil.
19
General Procedure
A
10 mL flask was charged with Mg ribbons (74 mg, 3.0 mmol), fitted
with a rubber septum, and purged with argon (1 min). Dry THF (4
mL) and the arylbromide (2.5 mmol) were added via a syringe. The
solution was stirred at r.t. for 1-3 h under argon. Cooled
to 0 ˚C, a solution of CoCl2 (16.1 mg,
0.12 mmol, 5 mol%) in dry THF (6 mL) was added. Synthetic
air (20 mL/min) was added through a needle to the solution.
After 0.5-3 h, the reaction was quenched with sat. aq NH4Cl
(5 mL), extracted with EtOAc (3 × 10 mL).
The
combined organic phases were dried (Na2SO4), concentrated,
and subjected to flash chromatography (cyclohexene-EtOAc).
New Compounds
3′,3′′-Difluoro[1,1′:4,1′′:4′,1′′′]quarter-phenyl
(2n): mp 182 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 7.75
(d, 4 H, J = 6 Hz), 7.65-7.05
(m, 12 H). ¹³C NMR (75 MHz, CDCl3): δ = 160.0
(d, J = 246 Hz), 140.4 (d, J = 6.8 Hz), 135.3 (d, J = 12.4 Hz), 131.1 (d, J = 3.4 Hz), 128.9, 128.5, 128.1,
122.7, 114.4 (d, J = 24.1 Hz).
MS (EI, 70 eV): m/z (%) = 342
(100) [M+], 320 (7), 264 (5),
170 (7), 77 (5). HRMS: m/z = 342.122.
IR (ATR): 1550 (m), 1473 (s), 1403 (m), 1246 (m), 1183 (m), 1130
(m), 1040 (m), 911 (s), 823 (s), 766 (s), 695 (s) cm-¹.
3,3′,4,4′-Tetrafluorobiphenyl
(2g): mp 83 ˚C; ¹H
NMR (300 MHz, CDCl3): δ = 7.39-7.32
(m, 2 H), 7.30-7.25 (m, 4 H). ¹³C
NMR (75 MHz, CDCl3): δ = 152.1
(dd, J = 12.7, 23.9 Hz), 148.8
(dd, J = 12.6, 24.8 Hz), 136.2,
123.0 (q, J = 3.4 Hz), 117.8
(d, J = 17.3 Hz), 116.0 (d, J = 17.9 Hz). MS (EI, 70 eV): m/z (%) = 226
(100 [M+], 206 (22), 175 (8),
156 (7), 138 (7), 112 (8). HRMS: m/z = 226.041.
IR (ATR): 3064 (w), 1881 (w), 1599 (s), 1495 (s), 1339 (s), 1316
(m), 1265 (s), 1184 (s), 1150 (m), 117 (s), 1028 (m), 943 (m), 909
(m), 885 (m), 865 (s), 805 (s), 766 (s), 739 (s) cm-¹.