Subscribe to RSS
DOI: 10.1055/s-0029-1218274
Transition-Metal-Catalyzed Rearrangement of 1,1-(Oligomethylene)-4-aryl-2-butene-1,4-diols: Ring Expansion vs. Aryl Group Migration
Publication History
Publication Date:
09 October 2009 (online)
Abstract
The transition-metal-catalyzed rearrangement of 1,1-(oligomethylene)-4-aryl-2-butene-1,4-diols was investigated. In the presence of PdCl2(MeCN)2 and Cu(OTf)2, a rapidly equilibrating 1,3-isomerization is followed by 1,2-migration to produce cyclopentanones or cyclohexanones through expansion of four- or five-membered ring systems. When employing larger ring systems or acyclic cores, aryl migration provides 2-aryl aldehydes.
Key words
rearrangements - alkenes - diols - transition metals - catalysis
- Supporting Information for this article is available online:
- Supporting Information
-
1a
Fittig R. Justus Liebigs Ann. Chem. 1859, 110: 23 -
1b
Butlerov A. Justus Liebigs Ann. Chem. 1874, 174: 125 -
1c
Mundy BP.Otzenberger RD. J. Org. Chem. 1973, 38: 2109 - 2 For an Essay on the discovery, see:
Berson JA. Angew. Chem. Int. Ed. 2002, 114: 4849 - 3
Collins CJ. Q. Rev. Chem. Soc. 1960, 14: 357 - For recent examples, see inter alia:
-
4a
Suzuki K.Takikawa H.Hachisu Y.Bode JW. Angew. Chem. Int. Ed. 2007, 46: 3252 -
4b
Reisman SE.Ready JM.Hasuoka A.Smith CJ.Wood JL. J. Am. Chem. Soc. 2006, 128: 1448 -
4c
Alvarez-Manzaneda E.Chahboun R.Barranco I.Cabrera E.Alvarez E.Lara A.Alvarez-Manzaneda R.Hmamouchi M.Es-Samti H. Tetrahedron 2007, 63: 11943 -
4d
Frongia A.Girard C.Ollivier J.Piras PP.Secci F. Synlett 2008, 2823 -
5a
Trost BM.Lee DC. J. Am. Chem. Soc. 1988, 110: 6556 -
5b
Trost BM.Brandi A. J. Am. Chem. Soc. 1984, 106: 5041 -
5c
Sworin M.Neumann WL. J. Org. Chem. 1988, 53: 4894 -
5d
Nakamura T.Matsui T.Tanino K.Kuwajima I. J. Org. Chem. 1997, 62: 3032 -
5e
Youn J.-H.Lee J.Cha JK. Org. Lett. 2001, 3: 2935 - For a review on Prins pinacol cascades, see:
-
6a
Overman LE.Pennington LD. J. Org. Chem. 2003, 68: 7143 - For selected examples and synthetic applications, see:
-
6b
Grese TA.Hutchinson KD.Overman LE. J. Org. Chem. 1993, 58: 2468 -
6c
Hirst GC.Johnson TO.Overman LE. J. Am. Chem. Soc. 1993, 115: 2992 -
6d
Mulzer J.Greifenberg S.Buschmann J.Luger P. Angew. Chem., Int. Ed. Engl. 1993, 32: 1173 -
6e
MacMillan DWC.Overman LE.Pennington LD. J. Am. Chem. Soc. 2001, 123: 9033 - 7 For a review on the use of carbophilic
Lewis acids in combination with pinacol-type rearrangments, see:
Crone B.Kirsch SF. Chem. Eur. J. 2008, 14: 3514 - For our works in the field, see:
-
8a
Kirsch SF.Binder JT.Crone B.Duschek A.Haug TT.Liébert C.Menz H. Angew. Chem. Int. Ed. 2007, 46: 2310 -
8b
Menz H.Binder JT.Crone B.Duschek A.Haug TT.Kirsch SF.Klahn P.Liébert C. Tetrahedron 2009, 65: 1880 -
8c
Kirsch SF.Binder JT.Liébert C.Menz H. Angew. Chem. Int. Ed. 2006, 45: 5878 -
8d
Binder JT.Crone B.Kirsch SF.Liébert C.Menz H. Eur. J. Org. Chem. 2007, 1636 -
8e
Crone B.Kirsch SF. J. Org. Chem. 2007, 72: 5435 -
8f
Baskar B.Bae HJ.An SE.Cheong JY.Rhee YH.Duschek A.Kirsch SF. Org. Lett. 2008, 10: 2605 -
9a
Wassermann HH.Cochoy RE.Baird MS. J. Am. Chem. Soc. 1969, 91: 2375 -
9b
Wassermann HH.Hearn MJ.Cochoy R. J. Org Chem. 1980, 45: 2874 -
9c
Wienand A.Reissig H.-U. Chem. Ber. 1991, 124: 957 -
9d
Nishimura T.Ohe K.Uemura S. J. Am. Chem. Soc. 1999, 121: 2645 -
9e
Hegedus LS.Ranslow PB. Synthesis 2000, 953 -
9f
Nishimura T.Ohe K.Uemura S. J. Org. Chem. 2001, 66: 1455 -
9g
Markham JP.Staben ST.Toste FD. J. Am. Chem. Soc. 2005, 127: 9708 - For seminal works, see:
-
10a
Ollivier J.Legros J.-Y.Fiaud J.-C.de Meijere A.Salaün J. Tetrahedron Lett. 1990, 31: 4135 -
10b
Ollivier J.Salaün J. Tetrahedron Lett. 1984, 25: 1269 -
10c
Salaün J.Karkour B. Tetrahedron Lett. 1988, 29: 1537 -
10d
Funayama S.Eda S.Komiyama K.Ohmura S.Tokunaga T. Tetrahedron Lett. 1989, 30: 3151 -
10e
Salaün J.Karkour B. Tetrahedron Lett. 1987, 28: 4669 - 11 For an asymmetric Wagner-Meerwein
shift related to this pinacol rearrangement, see:
Trost BM.Yasukata T.
J. Am. Chem. Soc. 2001, 123: 7162 -
12a
Lutz RE.Bass RG.Boykin DW. J. Org. Chem. 1964, 29: 3660 -
12b
Saito K.Horie Y.Mukai T.Toda T. Bull. Chem. Soc. Jpn. 1985, 58: 3118 -
12c
Uyehara T.Kawai Y.Yamada J.-i.Kato T. Chem Lett. 1987, 16: 137 - Protic acid catalysis:
-
14a
Braude EA.Fawcett JS.Newman DDE. J. Chem. Soc. 1950, 793 -
14b
Braude EA.Jones ERH.Stern ES. J. Chem. Soc. 1946, 396 -
14c
Braude EA.Jones ERH. J. Chem. Soc. 1944, 436 -
14d
Braude E.Stern E. J. Chem. Soc. 1947, 1096 -
14e
Sanz R.Martínez A.Miguel D.Álvarez-Gutiérres JM.Rodríguez F. Adv. Synth. Catal. 2006, 348: 1841 - Lewis acid catalysis:
-
15a
Mukhopadhyay M.Reddy MM.Maikap GC.Iqbal J. J. Org. Chem. 1995, 60: 2670 -
15b
Li C.-J.Wang D.Chen D.-L. J. Am. Chem. Soc. 1995, 117: 12867 -
15c
Malkov AV.Baxendale I.Mansfield DJ.Kocovsky P. Tetrahedron Lett. 1995, 38: 6351 -
15d
Morrill C.Beutner GL.Grubbs RH. J. Org. Chem. 2006, 71: 7813 -
15e
Kitamura M.Hayashi H.Yano M.Tanaka T.Maezaki M. Heterocycles 2007, 71: 2669 - 16 For a related case, see inter alia:
Wang J.Huang W.Zhang Z.Xiang X.Liu R.Zhou X. J. Org. Chem. 2009, 74: 3299 - 19 For the construction of seven-membered
ring systems through pinacol-type ring expansion, see the following review:
Kantorowski EJ.Kurth MJ. Tetrahedron 2000, 56: 4317 -
23a
Kenyon J.Partridge SM.Phillips H. J. Chem. Soc. 1937, 207 -
23b See also:
Vikhe YS.Hande SM.Kawai N.Uenishi J. J. Org. Chem. 2009, 74: 5174
References and Notes
Exposure of six-membered ring substrate 1c to 5 mol% of PPTS at 23 ˚C in CH2Cl2 provided an inseparable mixture of 3c and 4c in low yields (e.g., 29% after 14 h).
17Reaction of 1b in the presence of MgBr2 (5 mol%) led to clean formation of 4b without traces of 2b (or 3b).
18
Synthesis of (
E
)-2-(4-Methoxystyryl)cyclohexanone
(2b)
Cu(OTf)2 (1 mg, 0.003 mmol, 1 mol%)
was added to a solution of (E)-1-(4-methoxyphenyl)-3-(1-(triethylsilyl-oxy)cyclopentyl)prop-2-en-1-ol
(1c, 100 mg, 0.28 mmol) in CH2Cl2 (2.8
mL) and stirred at r.t. for 30 min (until TLC analysis indicated
complete conversion). The reaction mixture was concentrated under
reduced pressure, and the residue was purified by flash chromatography
on silica (pentanes-Et2O = 95:5).
Compound 2b was obtained as a colorless
solid in 96% yield (62 mg, 0.27 mmol). ¹H
NMR (360 MHz, CDCl3): δ = 1.69-1.83
(m, 3 H), 1.89-1.96 (m, 1 H), 2.01-2.09 (m, 1
H), 2.14-2.20 (m, 1 H), 2.31-2.40 (m, 1 H), 2.45-2.51
(m, 1 H), 3.17 (ddd, J = 0.9,
6.4, 11.3 Hz, 1 H), 3.80 (s, 3 H), 6.27 (dd, J = 5.9,
16.1 Hz, 1 H), 6.33 (d, J = 16.1
Hz, 1 H), 6.77-6.91 (m, 2 H), 7.29-7.33 (m, 2
H). ¹³C NMR (90.6 MHz, CDCl3): δ = 24.4
(t), 27.6 (t), 34.5 (t), 41.7 (t), 54.0 (d), 55.3 (d), 113.9 (d),
125.3 (d), 127.4 (d), 130.0 (s), 130.8 (d), 159.0 (s), 211.3 (s).
LRMS (EI): m/z = 230
(100)[M+], 202 (26), 173 (25),
159 (21), 134 (38), 121 (37). HRMS: m/z calcd
for C15H18O2 [M+]:
230.1307; found: 230.1307.
Synthesis of 3-Cyclohexylidene-2-(4-methoxyphenyl)-propanal
(3a)
Following the procedure to prepare 2b,¹8 allylic alcohol 1g (100 mg, 0.26 mmol) was converted into
the corresponding aldehyde 3a in the presence
of Cu(OTf)2 (1 mg, 1 mol%). The reaction mixture
was concentrated under reduced pressure, and the residue was purified
by flash chromatography on silica (pentanes-Et2O = 95:5). Compound 3a was obtained in 79% yield (50
mg, 0.20 mmol). ¹H NMR (360 MHz, CDCl3): δ = 1.45-1.59
(m, 6 H), 2.12-2.20 (m, 4 H), 3.80 (s, 3 H), 4.41 (dd, J = 2.6, 8.8
Hz, 1 H), 5.39-5.46 (m, 1 H), 6.88-6.94 (m, 2
H), 7.13-7.19 (m, 2 H), 9.55 (d, J = 2.6
Hz, 1 H). ¹³C NMR (90.6 MHz, CDCl3): δ = 26.6,
27.6, 28.5, 29.6, 37.3, 55.3, 56.3, 114.4, 115.1, 128.9, 129.4,
145.7, 158.8, 198.5. LRMS (EI): m/z = 244
(2) [M+], 215 (100), 147 (23),
121 (25). HRMS: m/z calcd for
C16H20O2 [M+]:
244.1463; found: 244.1468.
We also observed a high-yielding elimination when using 2-butene-1,4-diols that possess Bz-protected primary allylic alcohols. According to preliminary studies, this elimination appears to be quite general (Scheme [7] ).
22In seminal studies on related 1,3-isomerizations of phenylpropenyl carbinols, chirality transfer was reported:
24This correlates with the migratory aptitude observed in Wagner-Meerwein shifts.