Synlett 2009(18): 2987-2991  
DOI: 10.1055/s-0029-1218274
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Transition-Metal-Catalyzed Rearrangement of 1,1-(Oligomethylene)-4-aryl-2-butene-1,4-diols: Ring Expansion vs. Aryl Group Migration

Alex Lange, Wolfgang Heydenreuter, Helge Menz, Stefan F. Kirsch*
Department Chemie and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
Fax: +49(89)13115; e-Mail: stefan.kirsch@ch.tum.de;
Further Information

Publication History

Received 13 July 2009
Publication Date:
09 October 2009 (online)

Abstract

The transition-metal-catalyzed rearrangement of 1,1-(oligomethylene)-4-aryl-2-butene-1,4-diols was investigated. In the presence of PdCl2(MeCN)2 and Cu(OTf)2, a rapidly equilibrating 1,3-isomerization is followed by 1,2-migration to produce cyclopentanones or cyclohexanones through expansion of four- or five-membered ring systems. When employing larger ring systems or acyclic cores, aryl migration provides 2-aryl aldehydes.

    References and Notes

  • 1a Fittig R. Justus Liebigs Ann. Chem.  1859,  110:  23 
  • 1b Butlerov A. Justus Liebigs Ann. Chem.  1874,  174:  125 
  • 1c Mundy BP. Otzenberger RD. J. Org. Chem.  1973,  38:  2109 
  • 2 For an Essay on the discovery, see: Berson JA. Angew. Chem. Int. Ed.  2002,  114:  4849 
  • 3 Collins CJ. Q. Rev. Chem. Soc.  1960,  14:  357 
  • For recent examples, see inter alia:
  • 4a Suzuki K. Takikawa H. Hachisu Y. Bode JW. Angew. Chem. Int. Ed.  2007,  46:  3252 
  • 4b Reisman SE. Ready JM. Hasuoka A. Smith CJ. Wood JL. J. Am. Chem. Soc.  2006,  128:  1448 
  • 4c Alvarez-Manzaneda E. Chahboun R. Barranco I. Cabrera E. Alvarez E. Lara A. Alvarez-Manzaneda R. Hmamouchi M. Es-Samti H. Tetrahedron  2007,  63:  11943 
  • 4d Frongia A. Girard C. Ollivier J. Piras PP. Secci F. Synlett  2008,  2823 
  • 5a Trost BM. Lee DC. J. Am. Chem. Soc.  1988,  110:  6556 
  • 5b Trost BM. Brandi A. J. Am. Chem. Soc.  1984,  106:  5041 
  • 5c Sworin M. Neumann WL. J. Org. Chem.  1988,  53:  4894 
  • 5d Nakamura T. Matsui T. Tanino K. Kuwajima I. J. Org. Chem.  1997,  62:  3032 
  • 5e Youn J.-H. Lee J. Cha JK. Org. Lett.  2001,  3:  2935 
  • For a review on Prins pinacol cascades, see:
  • 6a Overman LE. Pennington LD. J. Org. Chem.  2003,  68:  7143 
  • For selected examples and synthetic applications, see:
  • 6b Grese TA. Hutchinson KD. Overman LE. J. Org. Chem.  1993,  58:  2468 
  • 6c Hirst GC. Johnson TO. Overman LE. J. Am. Chem. Soc.  1993,  115:  2992 
  • 6d Mulzer J. Greifenberg S. Buschmann J. Luger P. Angew. Chem., Int. Ed. Engl.  1993,  32:  1173 
  • 6e MacMillan DWC. Overman LE. Pennington LD. J. Am. Chem. Soc.  2001,  123:  9033 
  • 7 For a review on the use of carbophilic Lewis acids in combination with pinacol-type rearrangments, see: Crone B. Kirsch SF. Chem. Eur. J.  2008,  14:  3514 
  • For our works in the field, see:
  • 8a Kirsch SF. Binder JT. Crone B. Duschek A. Haug TT. Liébert C. Menz H. Angew. Chem. Int. Ed.  2007,  46:  2310 
  • 8b Menz H. Binder JT. Crone B. Duschek A. Haug TT. Kirsch SF. Klahn P. Liébert C. Tetrahedron  2009,  65:  1880 
  • 8c Kirsch SF. Binder JT. Liébert C. Menz H. Angew. Chem. Int. Ed.  2006,  45:  5878 
  • 8d Binder JT. Crone B. Kirsch SF. Liébert C. Menz H. Eur. J. Org. Chem.  2007,  1636 
  • 8e Crone B. Kirsch SF. J. Org. Chem.  2007,  72:  5435 
  • 8f Baskar B. Bae HJ. An SE. Cheong JY. Rhee YH. Duschek A. Kirsch SF. Org. Lett.  2008,  10:  2605 
  • 9a Wassermann HH. Cochoy RE. Baird MS. J. Am. Chem. Soc.  1969,  91:  2375 
  • 9b Wassermann HH. Hearn MJ. Cochoy R. J. Org Chem.  1980,  45:  2874 
  • 9c Wienand A. Reissig H.-U. Chem. Ber.  1991,  124:  957 
  • 9d Nishimura T. Ohe K. Uemura S. J. Am. Chem. Soc.  1999,  121:  2645 
  • 9e Hegedus LS. Ranslow PB. Synthesis  2000,  953 
  • 9f Nishimura T. Ohe K. Uemura S. J. Org. Chem.  2001,  66:  1455 
  • 9g Markham JP. Staben ST. Toste FD. J. Am. Chem. Soc.  2005,  127:  9708 
  • For seminal works, see:
  • 10a Ollivier J. Legros J.-Y. Fiaud J.-C. de Meijere A. Salaün J. Tetrahedron Lett.  1990,  31:  4135 
  • 10b Ollivier J. Salaün J. Tetrahedron Lett.  1984,  25:  1269 
  • 10c Salaün J. Karkour B. Tetrahedron Lett.  1988,  29:  1537 
  • 10d Funayama S. Eda S. Komiyama K. Ohmura S. Tokunaga T. Tetrahedron Lett.  1989,  30:  3151 
  • 10e Salaün J. Karkour B. Tetrahedron Lett.  1987,  28:  4669 
  • 11 For an asymmetric Wagner-Meerwein shift related to this pinacol rearrangement, see: Trost BM. Yasukata T.
    J. Am. Chem. Soc.  2001,  123:  7162 
  • 12a Lutz RE. Bass RG. Boykin DW. J. Org. Chem.  1964,  29:  3660 
  • 12b Saito K. Horie Y. Mukai T. Toda T. Bull. Chem. Soc. Jpn.  1985,  58:  3118 
  • 12c Uyehara T. Kawai Y. Yamada J.-i. Kato T. Chem Lett.  1987,  16:  137 
  • Protic acid catalysis:
  • 14a Braude EA. Fawcett JS. Newman DDE. J. Chem. Soc.  1950,  793 
  • 14b Braude EA. Jones ERH. Stern ES. J. Chem. Soc.  1946,  396 
  • 14c Braude EA. Jones ERH. J. Chem. Soc.  1944,  436 
  • 14d Braude E. Stern E. J. Chem. Soc.  1947,  1096 
  • 14e Sanz R. Martínez A. Miguel D. Álvarez-Gutiérres JM. Rodríguez F. Adv. Synth. Catal.  2006,  348:  1841 
  • Lewis acid catalysis:
  • 15a Mukhopadhyay M. Reddy MM. Maikap GC. Iqbal J. J. Org. Chem.  1995,  60:  2670 
  • 15b Li C.-J. Wang D. Chen D.-L. J. Am. Chem. Soc.  1995,  117:  12867 
  • 15c Malkov AV. Baxendale I. Mansfield DJ. Kocovsky P. Tetrahedron Lett.  1995,  38:  6351 
  • 15d Morrill C. Beutner GL. Grubbs RH. J. Org. Chem.  2006,  71:  7813 
  • 15e Kitamura M. Hayashi H. Yano M. Tanaka T. Maezaki M. Heterocycles  2007,  71:  2669 
  • 16 For a related case, see inter alia: Wang J. Huang W. Zhang Z. Xiang X. Liu R. Zhou X. J. Org. Chem.  2009,  74:  3299 
  • 19 For the construction of seven-membered ring systems through pinacol-type ring expansion, see the following review: Kantorowski EJ. Kurth MJ. Tetrahedron  2000,  56:  4317 
  • 23a Kenyon J. Partridge SM. Phillips H. J. Chem. Soc.  1937,  207 
  • 23b See also: Vikhe YS. Hande SM. Kawai N. Uenishi J. J. Org. Chem.  2009,  74:  5174 
13

Exposure of six-membered ring substrate 1c to 5 mol% of PPTS at 23 ˚C in CH2Cl2 provided an inseparable mixture of 3c and 4c in low yields (e.g., 29% after 14 h).

17

Reaction of 1b in the presence of MgBr2 (5 mol%) led to clean formation of 4b without traces of 2b (or 3b).

18

Synthesis of ( E )-2-(4-Methoxystyryl)cyclohexanone (2b)
Cu(OTf)2 (1 mg, 0.003 mmol, 1 mol%) was added to a solution of (E)-1-(4-methoxyphenyl)-3-(1-(triethylsilyl-oxy)cyclopentyl)prop-2-en-1-ol (1c, 100 mg, 0.28 mmol) in CH2Cl2 (2.8 mL) and stirred at r.t. for 30 min (until TLC analysis indicated complete conversion). The reaction mixture was concentrated under reduced pressure, and the residue was purified by flash chromatography on silica (pentanes-Et2O = 95:5). Compound 2b was obtained as a colorless solid in 96% yield (62 mg, 0.27 mmol). ¹H NMR (360 MHz, CDCl3): δ = 1.69-1.83 (m, 3 H), 1.89-1.96 (m, 1 H), 2.01-2.09 (m, 1 H), 2.14-2.20 (m, 1 H), 2.31-2.40 (m, 1 H), 2.45-2.51 (m, 1 H), 3.17 (ddd, J = 0.9, 6.4, 11.3 Hz, 1 H), 3.80 (s, 3 H), 6.27 (dd, J = 5.9, 16.1 Hz, 1 H), 6.33 (d, J = 16.1 Hz, 1 H), 6.77-6.91 (m, 2 H), 7.29-7.33 (m, 2 H). ¹³C NMR (90.6 MHz, CDCl3): δ = 24.4 (t), 27.6 (t), 34.5 (t), 41.7 (t), 54.0 (d), 55.3 (d), 113.9 (d), 125.3 (d), 127.4 (d), 130.0 (s), 130.8 (d), 159.0 (s), 211.3 (s). LRMS (EI): m/z = 230 (100)[M+], 202 (26), 173 (25), 159 (21), 134 (38), 121 (37). HRMS: m/z calcd for C15H18O2 [M+]: 230.1307; found: 230.1307.

20

Synthesis of 3-Cyclohexylidene-2-(4-methoxyphenyl)-propanal (3a)
Following the procedure to prepare 2b,¹8 allylic alcohol 1g (100 mg, 0.26 mmol) was converted into the corresponding aldehyde 3a in the presence of Cu(OTf)2 (1 mg, 1 mol%). The reaction mixture was concentrated under reduced pressure, and the residue was purified by flash chromatography on silica (pentanes-Et2O = 95:5). Compound 3a was obtained in 79% yield (50 mg, 0.20 mmol). ¹H NMR (360 MHz, CDCl3): δ = 1.45-1.59 (m, 6 H), 2.12-2.20 (m, 4 H), 3.80 (s, 3 H), 4.41 (dd, J = 2.6, 8.8 Hz, 1 H), 5.39-5.46 (m, 1 H), 6.88-6.94 (m, 2 H), 7.13-7.19 (m, 2 H), 9.55 (d, J = 2.6 Hz, 1 H). ¹³C NMR (90.6 MHz, CDCl3): δ = 26.6, 27.6, 28.5, 29.6, 37.3, 55.3, 56.3, 114.4, 115.1, 128.9, 129.4, 145.7, 158.8, 198.5. LRMS (EI): m/z = 244 (2) [M+], 215 (100), 147 (23), 121 (25). HRMS: m/z calcd for C16H20O2 [M+]: 244.1463; found: 244.1468.

21

We also observed a high-yielding elimination when using 2-butene-1,4-diols that possess Bz-protected primary allylic alcohols. According to preliminary studies, this elimination appears to be quite general (Scheme  [7] ).

Scheme 7

22

In seminal studies on related 1,3-isomerizations of phenylpropenyl carbinols, chirality transfer was reported:

24

This correlates with the migratory aptitude observed in Wagner-Meerwein shifts.