Synlett 2009(20): 3368-3372  
DOI: 10.1055/s-0029-1218365
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

A Mild and Inexpensive Procedure for the Synthesis of N,N′-Di-Boc-Protected Guanidines

Andrea Porcheddu*, Lidia De Luca, Giampaolo Giacomelli
Dipartimento di Chimica, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy
Fax: +39(079)212069; e-Mail: anpo@uniss.it.;
Further Information

Publication History

Received 7 September 2009
Publication Date:
11 November 2009 (online)

Abstract

A novel and efficient synthetic procedure for converting a diverse set of amines to N,N′-di-Boc-protected guanidines is described. The methodology comprises the use of cyanuric chloride (TCT) as activating reagent for di-Boc-thiourea. The employ of inexpensive TCT instead of classical HgCl2 eliminates the environmental hazard of heavy-metal waste without appreciable loss of yield or reactivity. This protocol provides an alternative route for the guanylation of amines from those currently employed.

    References and Notes

  • 1a Guanidines: Historical, Biological, Biochemical and Clinical Aspects of the Naturally Occurring Guanidino Compounds   Mori A. Cohen BD. Lowenthal A. Plenum Press; New York: 1985. 
  • 1b Guanidines 2: Further Explorations of the Biological and Clinical Significance of Guanidino Compounds   Mori A. Cohen BD. Koide H. Plenum Press; New York: 1987. 
  • 1c Feichtier K. Sings HL. Baker TJ. Matthews K. Goodman M.
    J. Org. Chem.  1998,  63:  8432 
  • 1d Le V.-D. Wong C.-H.
    J. Org. Chem.  2000,  65:  2399 
  • 1e McAlpine IJ. Armstrong RW. Tetrahedron Lett.  2000,  41:  1849 
  • 1f De Clercq E. Nat. Rev. Drug Discovery  2006,  5:  1015 
  • 2a Petersen MJ. Nielsen CK. Arrigoni-Martelli E.
    J. Med. Chem.  1978,  21:  773 
  • 2b Ganelin CR. Chronicles of Drug Discovery   Vol. 1:  Bindra JS. Lednicer D. Wiley; New York: 1982.  p.1-38  
  • 2c Taniguchi K. Shigenaga S. Ogahara T. Fujitsu T. Matsno M. Chem. Pharm. Bull.  1993,  41:  301 
  • 2d Yoshiizumi K. Seko N. Nishimura N. Ikeda S. Yoshino K. Kondo H. Tanizawa K. Bioorg. Med. Chem. Lett.  1998,  8:  3397 
  • 3a Heys L. Moore CG. Murphy PJ. Chem. Soc. Rev.  2000,  29:  57 ; and references cited there
  • 3b Schug KA. Lindner W. Chem. Rev.  2005,  105:  67 
  • 4a Cotton FA. Day VW. Hazen EE. Larsen S.
    J. Am. Chem. Soc.  1973,  95:  4834 
  • 4b Schneider SE. Bishop PA. Salazar MA. Bishop OA. Anslyn EV. Tetrahedron  1998,  54:  15063 
  • 4c Linton B. Hamilton AD. Tetrahedron  1999,  55:  6027 
  • 4d Linton BR. Carr AJ. Orner BP. Hamilton AD. J. Org. Chem.  2000,  65:  1566 
  • 5a Orner BP. Hamilton AD. J. Inclusion Phenom. Macrocyclic Chem.  2001,  41:  141 
  • 5b Manimala JC. Anslyn EV. Eur. J. Org. Chem.  2002,  3909 
  • 5c Katritzky AR. Rogovoy BV. ARKIVOC  2005,  (iv):  49 
  • 5d Ohara K. Vasseur J.-J. Smietana M. Tetrahedron Lett.  2009,  50:  1463 
  • 6 Schow S. Cyanamide, In Encyclopedia of Reagents for Organic Synthesis   Paquette LA. Wiley; Sussex: 1996.  p.1408-1410  
  • 7a Bernatowicz MS. Wu Y. Matsueda GR. J. Org. Chem.  1992,  57:  2497 
  • 7b Drake B. Patek M. Lebl M. Synthesis  1994,  579 
  • 7c Patek M. Smrcina M. Nakanishi E. Izawa H. J. Comb. Chem.  2000,  2:  370 
  • 7d Drager G. Solodenko W. Messinger J. Schön U. Kirschning A. Tetrahedron Lett.  2002,  43:  1401 
  • 7e Castillo-Melendez JA. Golding BT. Synthesis  2004,  1655 
  • 7f Solodenko W. Bröker P. Messinger J. Schön U. Kirschning A. Synthesis  2006,  461 
  • 8 Palmer DC. O-Methylisourea, In Encyclopedia of Reagents for Organic Synthesis   Paquette LA. Wiley; Sussex: 1995.  p.3525-3526  
  • 9 Feichtinger K. Zapf C. Sings HL. Goodman M. J. Org. Chem.  1998,  63:  3804 
  • 10a Levallet C. Lerpiniere J. Ko SY. Tetrahedron  1997,  53:  5291 
  • 10b Guo ZX. Cammidge AN. Horwell DC. Synth. Commun.  2000,  30:  2933 
  • 10c Gers T. Kunce D. Markowski P. Izdebski J. Synthesis  2004,  37 
  • 11 Yong YF. Kowalski JA. Lipton MA. J. Org. Chem.  1997,  62:  1540 
  • 14 Porcheddu A. Giacomelli G. Piredda I. J. Comb. Chem.  2009,  11:  126 
  • 15 Porcheddu A. Giacomelli G. Chighine A. Masala S. Org. Lett.  2004,  6:  4925 
  • 16a Falorni M. Porcheddu A. Taddei M. Tetrahedron Lett.  1999,  40:  4395 
  • 16b Blotny G. Tetrahedron  2006,  62:  9507 ; and references cited therein
  • 16c Giacomelli G. Porcheddu A. 1,3,5-Triazines, In Comprehensive Heterocyclic Chemistry III   Vol. 9:  Katritzky AR. Ramsden CA. Scriven EFV. Taylor RJK. Elsevier; Oxford: 2008.  p.197-290  
  • 24 The triazine ring is weakly basic therefore a dilute acid wash is able to remove any byproduct as well as any excess reagent from the reaction mixture. Reagents for High-Throughput Solid-Phase Organic Synthesis, In Handbook of Reagents for Organic Synthesis   Wipf P. Wiley; Sussex: 1999.  p.72-74  
  • 26 TCT react DMF to give an insoluble Vilsmeier-Haack-type specie, which precipitates: De Luca L. Giacomelli G. Porcheddu A. Org. Lett.  2002,  4:  553 ; under these conditions, we observed a partial removal of Boc-protective group, and the formation of several side products in the crude reaction mixture.
  • 29 Identified by matching all the analytical data with those described in literature, see: Balakrishnan S. Zhao C. Zondlo NJ. J. Org. Chem.  2007,  72:  9834 
  • 31a Ho K.-C. Sun C. Bioorg. Med. Chem. Lett.  1999,  9:  1517 
  • 31b

    See also ref. 5c.

12

Many of these reagents present difficulties such as toxicity, odour, moisture-sensitivity, harsh reaction conditions, and long reaction time.

13

The application of reagents containing two urethane-type protecting groups is beneficial since two electron-withdrawing groups in positions conjugated with the reaction center increase the electrophilicity and the solubility of the guanylating agent.

17

Generally, the conversion of protected thiourea into a guanidine requires initial activation.

18

In particularly, we were interested in replacing the traditional activating Mukaiyama reagent with the readily available cyanuric chloride for the guanylation of di-Boc-protected thiourea.

19

The use of NMM or Et3N proved to be crucial to reaction success. Without a base, the reaction did not take place.

20

Adding a catalytic amount of DMAP we have detected an increased reaction rate.

21

The Boc protecting group was then removed by treatment with 3 M anhyd methanolic HCl, to yield the guanidine as the HCl salt in 96% isolated yield.

22

The ability to use only 0.33 equiv of the TCT as guanylating agent is advantageous since it minimizes reagent consumption and byproduct generation compared to the Mukaiyama reagent and S-methylisothioureas derivatives. Moreover our method does not give off toxic gaseous side product such as methyl mercaptan that is generated using N,N′′-bis-Boc-S-methylisotiourea as guanylating reagent (see ref. 10a-c).

23

Representative Procedure for the Synthesis of N , N ′′-Di-Boc-protected Guanidines: N , N ′-Bis( tert -butoxy-carbonyl)- N ′′-benzylguanidine (3a)
To a solution of cyanuric chloride (185 mg, 1.0 mmol) in dry THF (20 mL), N-methylmorpholine (303 mg, 330 µL, 3.0 mmol) was added at 0 ˚C under argon and with vigorous stirring. A white suspension was formed to which a solution of the N,N′-di-Boc-thiourea 1 (830 mg, 3.0 mmol) and N-methylmorpholine (606 mg, 660 µL) in anhydrous THF (20 mL) was added, and the stirring was continued at reflux temperature for 12 h. The slurry was cooled to r.t. and to this mixture, benzylamine 2a (482 mg, 491 µL, 4.5 mmol) and DMAP (10 mg) were added, and the stirring was run for additional 8 h at r.t. The reaction was judged to be complete by TLC analysis. After completion of the reaction, solid material was collected by suction, followed by successive washing with a minimal amount of THF, and the filtrates were combined and concentrated. The residue was dissolved in CH2Cl2, and the resulting solution was washed successively with H2O, HCl (1 N), NaHCO3 (sat. solution), and then with brine. The organic layer was dried over anhyd Na2SO4, passed through short a silica gel column (hexane-EtOAc = 8:2), and the solvent removed under reduced pressure to give 3a (1.0 g, 95%) pure as an off-white solid; mp 125-126 ˚C [lit.:7b mp 126-127 ˚C]. TLC: R f = 0.46 (hexane-EtOAc = 8:2). ¹H NMR (300 MHz, CDCl3): δ = 1.47 (s, 9 H), 1.51 (s, 9 H), 4.59 (d, J = 5.2 Hz, 2 H), 7.20-7.39 (m, 5 H), 8.43 (br s, 1 H), 11.41 (br s, 1 H). ¹³C NMR (75 MHz, CDCl3): δ = 27.9, 28.3, 44.9, 80.5, 82.9, 127.8, 128.2, 129.0, 137.2, 152.9, 156.4, 163.4. ESI-HRMS: m/z [M + H]+ calcd for C18H28N3O4: 350.2080; found: 350.2092. Anal. Calcd for C18H27N3O4: C, 61,87; H, 7,79; N, 12,03. Found: C, 61.71; H, 7.95, N, 11.92.

25

Performing the model reaction in CH2Cl2 we have recovered the desired protected guanidine 3a in very low yields (<5%).

27

Unchanged reagents were present still after 36 h at r.t.

28

All the analytical data are consistent with those described in the literature.

30

In the reaction of TCT/di-Boc-thiourea 1 with phenylalanine methyl esther 2o, we have not observed significant racemization of the stereogenic center as revealed by the optical rotation value of the products 3o if compared with that reported in the literature (ref. 29).

32

The exact intermediates for this TCT-promoted guanylating reaction formation are unknown.