Subscribe to RSS
DOI: 10.1055/s-0029-1219547
A New Synthetic Methodology for the Pyrrolidine Ring
Publication History
Publication Date:
23 February 2010 (online)
Abstract
An unprecedented synthesis of pyrrolidine rings has been accomplished by the reaction of azidoacetyl derivatives with maleate and fumarate esters.
Key words
azides - enamines - pyrrolidine - phenothiazine
- 1
Mietzsch F. Angew. Chem. 1954, 66: 363 - 2
Ionescu M.Mantsch H. Adv. Heterocycl. Chem. 1967, 8: 83 - 3
Bodea C.Silberg I. Adv. Heterocycl. Chem. 1968, 9: 321 - 4
Valzelli L.Garattini S. In Principles of PsychopharmacologyClark WG. Academic Press; New York: 1970. p.255 - 5
Okafor CO. Heterocycles 1977, 7: 391 - 6
Eckstein Z.Urbanski T. Adv. Heterocycl. Chem. 1978, 23: 1 - 7
Szabo J. Chem. Heterocycl. Compd. (Engl. Transl.) 1979, 15: 291 - 8
Albery WJ.Foulds AW.Hall KJ.Hillman AR.Edgell RG.Orchard AF. Nature (London) 1979, 282: 793 - 9
Motohashi N. In Bioactive Molecules 4: Phenothiazines and 1,4-Benzothiazines, Chemical and Biomedical AspectsGupta RR. Elsevier; Amsterdam: 1988. p.705 - 10
Grieß P. Philos. Trans. R. Soc. London 1864, 13: 377 - 11
Grieß P. Justus Liebigs Ann. Chem. 1865, 135: 131 - 12
Scriven EFV.Turnbull K. Chem. Rev. 1988, 88: 297 - 13
Bräse S.Gil C.Knepper K.Zimmermann V. Angew. Chem. Int. Ed. 2005, 44: 5188 - 14
Chemistry
of Halides, Pseudo-Halides and Azides
Part 1 and
2:
Patai S. Wiley; Chichester: 1995. - 15
Kumar HMS.Reddy BVS.Anjaneyulu S.Yadav JS. Tetrahedron Lett. 1999, 40: 8305 - 16
Huisgen R.Knorr R.Möbius L.Szeimies G. Chem. Ber. 1965, 98: 4014 - 17
Pyne SG.Davis AS.Gates NJ.Nicole J.Hartley JP.Lindsay KB.Machan T.Tang M. Synlett 2004, 2670 - 18
Harwood LM.Vickers RJ. In Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural ProductsPadwa A.Pearson W. Wiley and Sons; New York: 2002. -
20a
Crystal Structure Determination of 2a
Crystal Data
Monoclinic, space group P21/c, a = 8.9732 (3), b = 21.1876 (7), c = 13.1662 (4) Å, β = 94.560 (4)˚, Z = 4, T = 100 K.
Data Collection
A crystal ca. 0.3 × 0.25 × 0.2 mm³ was used to record 64269 intensities on a Oxford Diffraction Xcalibur E diffractometer using MoKα radiation (λ = 0.71073 Å).
Structure Refinement
The structure was refined anisotropically on F ² (program SHELXL-97)²0b to wR2 = 0.0854, R1 = 0.0346 for 351 parameters and 7192 unique reflexions. Data have been deposited in Cambridge under the number CCDC-756944.
-
20b
Sheldrick GM. Acta Crystallogr., Sect. A.: Fundam. Crystallogr. 2008, 64: 112
References and Notes
Analytical Data
of Enamine 3a
Yield 0.28 g, 14%; R
f
= 0.47;
mp 163-164 ˚C. IR (ATR): 2941, 1743,
1676, 1602, 1443, 1335, 1220, 1116, 754 cm-¹. ¹H
NMR (400 MHz, CDCl3, TMS): δ = 3.66
(s, 3 H, CH3), 3.77 (s, 3 H, CH3), 4.39 (br
s, 2 H, CH2), 5.40 (s, 1 H, CH), 7.23-7.54 (m,
8 H, 8 × CHar), 8.47 (s, 1
H, NH). ¹³C NMR (100 MHz, CDCl3,
TMS): δ = 46.9 (t), 50.9 (q),
52.6 (q), 90.4 (d), 120.9 (s), 126.9 (d), 127.1 (d), 127.3 (d),
128.1 (d), 133.2 (s), 137.6 (s), 164.1 (s), 168.6 (s), 170.0 (s).
MS (EI): m/z (%) = 398
(12)[M+], 331 (12), 199 (100).
Anal. Calcd for C20H18N2O5S:
C, 60.29; H, 4.55; N, 7.03. Found: C, 60.57; H, 4.61; N, 7.28.
Analytical Data
of Pyrrolidine 2a
Yield 1.57 g, 58%; R
f
= 0.25;
mp 192-193 ˚C. IR (ATR): 3342, 1734,
1723, 1675, 1432, 1342, 1297, 1031, 771, 755 cm-¹. ¹H
NMR (400 MHz, CDCl3, TMS): δ = 2.75
(s, 2 H, CH2), 3.23 (s, 1 H, NH), 3.54 (s, 3 H, CH3),
3.62 (s, 3 H, CH3), 3.66 (m, 1 H, CH), 3.69 (s, 3 H,
CH3), 3.75 (m, 1 H, CH), 3.79 (s, 3 H, CH3),
4.70 (m, 1 H, CH), 7.20-7.70 (m, 8 H, 8 × CHar). ¹³C
NMR (100 MHz, CDCl3, TMS): δ = 40.2 (t),
51.4 (q), 51.9 (q), 52.1 (q), 52.2 (q), 53.0 (d), 59.0 (d), 69.3
(s), 126.3 (d), 126.9 (d), 127.0 (d), 127.3 (d), 127.4 (d), 127.8
(d), 128.1 (d), 133.5 (s), 133.4 (d), 138.0 (s), 138.2 (s), 170.3
(s), 170.4 (s), 170.6 (s), 171.1 (s), 173.1 (s). MS (EI): m/z (%) = 542
(5)[M+], 483 (3), 451 (3),
316 (16), 284 (12), 224 (18), 199 (100). Anal. Calcd for C26H26N2O9S:
C, 57.56; H, 4.83; N, 5.16. Found: C, 57.79; H, 4.99; N, 5.47.