Subscribe to RSS
DOI: 10.1055/s-0029-1219567
Deracemisation of Secondary Alcohols via Biocatalytic Stereoinversion
Publication History
Publication Date:
02 March 2010 (online)
Abstract
The development of various deracemisation concepts from our laboratory for secondary alcohols is summarised. The aim was to find alternatives for dynamic kinetic resolution and related deracemisation concepts. In our improved system, deracemisation is achieved via simultaneous enantioselective oxidation and asymmetric reduction, thereby demonstrating a rare example of concurrent oxidation and reduction in preparative organic chemistry. Such concepts could also be exploited for the racemisation of secondary alcohols through omitting the cofactor recycling.
1 Introduction and Background
2 One Pot, Two Sequential Steps
3 Concurrent Oxidation and Reduction by Compartmentalisation
4 Orchestration of the Oxidation and Reduction
5 Racemisation
6 Conclusion
Key words
deracemisation - secondary alcohols - asymmetric synthesis - biocatalysis - redox reactions
- 1
Noyori R.Ohkuma T. Angew. Chem. Int. Ed. 2001, 40: 40 - 2
Ma Y.Liu H.Chen L.Cui X.Zhu J.Deng J. Org. Lett. 2003, 5: 2103 -
3a
Kula M.-R.Kragl U. Dehydrogenases in the Synthesis of Chiral Compounds, In Stereoselective BiocatalysisPatel RN. Marcel Dekker; New York: 2000. p.839 -
3b
Patel RN. Curr. Opin. Biotechnol. 2001, 12: 587 -
3c
Nakamura K.Matsuda T. Reduction of Ketones, In Enzyme Catalysis in Organic Synthesis Vol. 3:Drauz K.Waldmann H. Wiley-VCH; Weinheim: 2002. p.991 -
3d
Kroutil W.Mang H.Edegger K.Faber K. Curr. Opin. Chem. Biol. 2004, 8: 120 -
3e
de Wildeman SMA.Sonke T.Schoemaker HE.May O. Acc. Chem. Res. 2007, 40: 1260 -
3f
Goldberg K.Schroer K.Lütz S.Liese A. Appl. Microbiol. Biotechnol. 2007, 76: 237 -
3g
Moore JC.Pollard DJ.Kosjek B.Devine PN. Acc. Chem. Res. 2007, 40: 1412 -
4a
Arterburn JB. Tetrahedron 2001, 57: 9765 -
4b
Faller JW.Lavoie AR. Org. Lett. 2001, 3: 3703 -
4c
Schmid A.Hollmann F.Bühler B. Oxidation of Alcohols, In Enzyme Catalysis in Organic Synthesis Vol. 3:Drauz K.Waldmann H. Wiley-VCH; Weinheim: 2002. p.991 -
4d
Nishibayashi Y.Yamauchi A.Onodera G.Uemura S. J. Org. Chem. 2003, 68: 5875 -
4e
Mandal SK.Sigman MS. J. Org. Chem. 2003, 68: 7535 -
4f
Edegger K.Mang H.Faber K.Gross J.Kroutil W. J. Mol. Catal. A: Chem. 2006, 251: 66 - 5
Bornscheuer UT.Bessler C.Srinivas R.Krishna SH. Trends Biotechnol. 2002, 20: 433 - 6
Faber K. Chem. Eur. J. 2001, 7: 5004 - 7 For a recent review on the deracemisation
of amino acids, see:
Servi S.Tessaro D.Pedrocchi-Fantoni G. Coord. Chem. Rev. 2008, 252: 715 -
8a
Wallner SR.Pogorevc M.Trauthwein H.Faber K. Eng. Life Sci. 2004, 4: 512 -
8b
Gutierrez M.-C.Furstoss R.Alphand V. Adv. Synth. Catal. 2005, 347: 1051 -
9a
Kim M.-J.Ahn Y.Park J. Curr. Opin. Biotechnol. 2002, 13: 578 -
9b
Pamies O.Bäckvall J.-E. Trends Biotechnol. 2004, 22: 130 -
9c
Martin-Matute B.Bäckvall J.-E. Curr. Opin. Chem. Biol. 2007, 11: 226 -
9d
Kamal A.Azhar MA.Krishnaji T.Malik MS.Azeeza S. Coord. Chem. Rev. 2008, 252: 569 -
9e
Ahn Y.Ko S.-B.Kim M.-J.Park J. Coord. Chem. Rev. 2008, 252: 647 - 10
Oikawa T.Mukoyama S.Soda K. Biotechnol. Bioeng. 2001, 73: 80 - Related concepts are applied for the deracemisation of amines/amino acids, see:
-
11a
Soda K.Oikawa T.Yokoigawa K. J. Mol. Catal. B: Enzym. 2001, 11: 149 -
11b
Turner NJ. Curr. Opin. Chem. Biol. 2004, 8: 114 -
11c
Turner NJ.Carr R. Biocatalytic Routes to Nonracemic Chiral Amines, In Biocatalysis in the Pharmaceutical and Biotechnology IndustryPatel RN. CRC; Boca Raton / FL: 2007. p.743 - For reviews, see:
-
12a
Carnell AJ. Adv. Biochem. Eng./Biotechnol. 1999, 63: 57 -
12b
Azerad R.Buisson D. Curr. Opin. Biotechnol. 2000, 11: 565 -
12c
See also ref. 3b
-
12d
Nakamura K.Matsuda T.Harada T. Chirality 2002, 14: 703 -
12e
Gruber CC.Lavandera I.Faber K.Kroutil W. Adv. Synth. Catal. 2006, 348: 1789 -
13a
Adair GRA.Williams JMJ. Chem. Commun. (Cambridge) 2005, 5578 -
13b
Shimada Y.Miyake Y.Matsuzawa H.Nishibayashi Y. Chem. Asian J. 2007, 2: 393 - 14
Garrett CE.Prasad K. Adv. Synth. Catal. 2004, 346: 889 - 15
Wu X.Xin J.Zhu L.Branford-White C.Sun W.Xu J.Xia C. Lett. Org. Chem. 2008, 5: 672 - For recent examples, see:
-
16a
Vaijayanthi T.Chadha A. Tetrahedron: Asymmetry 2007, 18: 1077 -
16b
Utsukihara T.Misumi O.Nakajima K.Koshimura M.Kuniyoshi M.Kuroiwa T.Horiuchi CA. J. Mol. Catal. B: Enzym. 2008, 51: 19 -
16c
Chen LS.Mantovani SM.de Oliveira LG.Duarte MCT.Marzaioli AJ. J. Mol. Catal. B: Enzym. 2008, 54: 50 -
16d
Titu D.Chadha A. J. Mol. Catal. B: Enzym. 2008, 52-53: 168 -
16e
Titu D.Chadha A. Tetrahedron: Asymmetry 2008, 19: 1698 -
16f
Nie Y.Xu Y.Hu QS.Xiao R. J. Microbiol. Biotechnol. 2009, 19: 65 - Employing two different micro-organisms, one for oxidation and one for reduction, was reported to be less efficient compared with performing the two steps separately, see:
-
17a
Takahashi E.Nakamichi K.Furui M. J. Ferment. Bioeng. 1995, 80: 247 -
17b
Fantin G.Fogagnolo M.Giovannini PP.Medici A.Pedrini P. Tetrahedron: Asymmetry 1995, 6: 3047 -
18a
Hummel W.Riebel B. Ann. N. Y. Acad. Sci. 1996, 799: 713 -
18b
Adam W.Lazarus M.Boss B.Saha-Möller CR.Humpf HU.Schreier P. J. Org. Chem. 1997, 62: 7841 -
18c
Adam W.Lazarus M.Saha-Möller CR.Schreier P. Tetrahedron: Asymmetry 1998, 9: 351 -
18d
Tsuchiya S.Miyamoto K.Ohta H. Biotechnol. Lett. 1992, 14: 1137 -
18e
Shimizu S.Hatori S.Hata H.Yamada H. Enzyme Microb. Technol. 1987, 9: 411 -
19a
Stampfer W.Kosjek B.Moitzi C.Kroutil W.Faber K. Angew. Chem. Int. Ed. 2002, 41: 1014 -
19b
Stampfer W.Kosjek B.Faber K.Kroutil W. J. Org. Chem. 2003, 68: 402 -
19c
See also ref. 4f
-
19d
Edegger K.Gruber CC.Poessl TM.Wallner SR.Lavandera I.Faber K.Niehaus F.Eck J.Oehrlein R.Hafner A.Kroutil W. Chem. Commun. (Cambridge) 2006, 2402 - 20
Stampfer W.Edegger K.Kosjek B.Faber K.Kroutil W. Adv. Synth. Catal. 2004, 346: 57 - 21
Voss CV.Gruber CC.Kroutil W. Tetrahedron: Asymmetry 2007, 18: 276 - 22
Nakamura N.Matsuda T.Harada T. Chirality 2002, 14: 703 - For recent reviews, see:
-
23a
Müller TJJ. Metal Catalyzed Cascade Reactions Springer; Heidelberg: 2006. -
23b
Wasilke J.-C.Obrey SJ.Baker RT.Bazan GC. Chem. Rev. 2005, 105: 1001 -
23c
Lee JM.Na Y.Han H.Chang S. Chem. Soc. Rev. 2004, 33: 302 -
23d
Ma J.-A.Cahard D. Angew. Chem. Int. Ed. 2004, 43: 4566 -
23e
Ajamian A.Gleason JL. Angew. Chem. Int. Ed. 2004, 43: 3754 - For selected examples, see:
-
24a
Goldman AS.Roy AH.Huang Z.Ahuja R.Schinski W.Brookhart M. Science (Washington, D. C.) 2006, 312: 257 -
24b
Onodera G.Nishibayashi Y.Uemura S. Angew. Chem. Int. Ed. 2006, 45: 3819 -
24c
Trost BM.Machacek MR.Faulk BD.
J. Am. Chem. Soc. 2006, 128: 6745 -
24d
Shekhar S.Trantow B.Leitner A.Hartwig JF. J. Am. Chem. Soc. 2006, 128: 11770 -
24e
D’Souza DM.Rominger F.Müller TJJ. Angew. Chem. Int. Ed. 2005, 44: 153 -
24f
Kressierer CJ.Müller TJJ. Angew. Chem. Int. Ed. 2004, 43: 5997 - 25
Tietze LF.Brasche G.Gericke K. Domino Reactions in Organic Synthesis Wiley-VCH; Weinheim: 2006. - 27
Voss CV.Gruber CC.Kroutil W. Angew. Chem. Int. Ed. 2008, 47: 741 - 28
Voss CV.Gruber CC.Faber K.Knaus T.Macheroux P.Kroutil W. J. Am. Chem. Soc. 2008, 130: 13969 -
29a
Ebbers EJ.Ariaans GJA.Houbiers JPM.Bruggink A.Zwanenburg B. Tetrahedron 1997, 53: 9417 -
29b
Kim N.Ko S.-B.Kwon MS.Kim M.-J.Park J. Org. Lett. 2005, 7: 4523 -
29c
Riermeier TH.Gross P.Monsees A.Hoff M.Trauthwein H. Tetrahedron Lett. 2005, 46: 3404 -
29d
Boren L.Martin-Matute B.Xu Y.Cordova A.Baeckvall J.-E. Chem. Eur. J. 2006, 12: 225 -
29e
van Nispen SFGM.van Buijtenen J.Vekemans JAJM.Meuldijk J.Hulshof LA. Tetrahedron: Asymmetry 2006, 17: 2299 -
29f
Hoyos P.Fernandez M.Sinisterra JV.Alcantara AR. J. Org. Chem. 2006, 71: 7632 -
30a
Huerta FF.Minidis ABE.Bäckvall J.-E. Chem. Soc. Rev. 2001, 30: 321 -
30b
Klomp D.Danashvili K.Svennum NC.Chantapariyavat N.Wong C.-S.Vilela F.Maschmeyer T.Peters JA.Hanefeld U. Org. Biomol. Chem. 2005, 3: 483 - 31
Larsson ALE.Persson BA.Bäckvall J.-E. Angew. Chem. Int. Ed. Engl. 1997, 36: 1211 - 32
Allen JV.Williams JMJ. Tetrahedron Lett. 1996, 37: 1859 - 33
Berkessel A.Sebastian-Ibarz ML.Müller TN. Angew. Chem. Int. Ed. 2006, 45: 6567 - 34
Wuyts S.De Temmerman K.De Vos DE.Jacobs PA. Chem. Eur. J. 2005, 11: 386 - 35
Schnell B.Faber K.Kroutil W. Adv. Synth. Catal. 2003, 345: 653 - 36
Gruber CC.Nestl BM.Gross J.Hildebrandt P.Bornscheuer UT.Faber K.Kroutil W. Chem. Eur. J. 2007, 13: 8271 - 37
Hildebrandt P.Musidlowska A.Bornscheuer UT.Altenbuchner J. Appl. Microbiol. Biotechnol. 2002, 59: 483 - 38
Lavandera I.Kern A.Resch V.Ferreira-Silva B.Glieder A.Fabian WMF.de Wildeman S.Kroutil W. Org. Lett. 2008, 10: 2155
References
Geotrichum candidum NBRC 5767, Candida parapsilosis NBRC 0708 (or ATCC 7330), and Sphingomonas paucimobilis NBRC 13934 ( = ATCC 10829, NCIB 8195, NRRL B-54).