Synlett 2010(7): 1043-1046  
DOI: 10.1055/s-0029-1219568
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

A Convenient Transformation of 2-Alkylidenecycloalkanones into Alkyl-Substituted Bicyclo[n.1.0]alkan-1-ols: Application to the Synthesis of Capsaicin

Dzmitry G. Kananovich, Dzmitry M. Zubrytski, Oleg G. Kulinkovich*
Department of Organic Chemistry, Belarusian State University, Nezavisimosty Av. 4, 220030 Minsk, Belarus
Fax: +375(17)2265609; e-Mail: kulinkovich@bsu.by;
Further Information

Publication History

Received 4 January 2010
Publication Date:
02 March 2010 (online)

Abstract

Treatment of 2-alkylidenecycloalkanones with hydrogen iodide in benzene and subsequent reaction of the obtained β-iodo ketones with zinc dust in THF in the presence of chlorotrimethyl­silane or titanium(IV) chlorotriisopropoxide led to exo- and endo-(n+3)-alkylbicyclo[n.1.0]alkan-1-ols in high yields. Cyclization of the intermediate β-iodo ketones under these conditions proceeded in a moderate to good diastereoselectivity, and the resulted bicyclic cyclopropanols were easily separated by column chromatography over silica gel. exo-7-Isopropylbicyclo[4.1.0]heptan-1-ol obtained in this manner was efficiently employed as a key intermediate in the synthesis of capsaicin.

    References and Notes

  • 1a Gibson DH. De Puy CH. Chem. Rev.  1974,  74:  605 
  • 1b Kulinkovich OG. de Meijere A. Chem. Rev.  2000,  100:  2789 
  • 1c Kulinkovich OG. Chem. Rev.  2003,  103:  2597 
  • 1d Reissig H.-U. Zimmer R. Chem. Rev.  2003,  103:  1151 
  • 1e Kulinkovich OG. Eur. J. Org. Chem.  2004,  4517 
  • 1f Kulinkovich OG. Russ. Chem. Bull., Int. Ed. (Engl. Transl.)  2004,  53:  1065 
  • 1g Garcia P. Diez D. Anton AB. Garrido NM. Marcos IS. Basabe P. Urones JG. Mini-Rev. Org. Chem.  2006,  3:  291 
  • 2a Hamon DPG. Sinclair RW. J. Chem. Soc., Chem. Commun.  1968,  890 
  • 2b Fukuzawa S. Niimoto Y. Sakai S. Tetrahedron Lett.  1991,  32:  7691 
  • 2c Fukazawa S.-J. Furuya H. Tsuchimoto T. Tetrahedron  1996,  52:  1953 
  • 2d Fadel A. Tetrahedron: Asymmetry  1994,  5:  531 
  • 2e Baylis AM. Thomas EJ. Tetrahedron  2007,  63:  11666 
  • 2f Hasegawa E. Kitazume T. Suzuki K. Tosaka E. Tetrahedron Lett.  1998,  39:  4059 
  • 2g Hasegawa E. Takizawa S. Iwaya K. Kurokawa M. Chiba N. Yamamichi K. Chem. Commun.  2002,  1966 
  • 2h Schwartz BD. Tilly DP. Heim R. Wiedemann S. Williams CM. Bernhardt PV. Eur. J. Org. Chem.  2006,  3181 
  • 2i Tsuchida H. Tamura M. Hasegawa E. J. Org. Chem.  2009,  74:  2467 
  • 3a Narasimhan NS. Patil PA. Tetrahedron Lett.  1986,  27:  5133 
  • 3b Narasimhan NS. Sunder NM. Patil PA. J. Chem. Soc., Perkin Trans. 1  1990,  1331 
  • 4 The formation of 1-phenylcyclopropanol as major product in the attempts to perform the addition of the corresponding β-zinc ketone to aldehydes in the presence of titanium(IV) chlorotriisopropoxide was observed: Ochiai H. Nishihara T. Tamaru Y. Yoshida Z. J. Org. Chem.  1988,  53:  1343 
  • 5 For a stereoselective synthesis of cyclopropanone ketals via silyl chloride promoted cyclization of β-zinciopropionates, see: Yasui K. Tanaka S. Tamaru Y. Tetrahedron  1995,  51:  6881 
  • 6 Kananovich DG. Kulinkovich OG. Tetrahedron  2008,  64:  1536 
  • 7a Rubottom GM. Beedle EC. Kim C.-W. Mott RC. J. Am. Chem. Soc.  1985,  107:  4230 
  • 7b Sugimura T. Katagiri T. Tai A. Tetrahedron Lett.  1992,  33:  367 
  • 7c Kirihara M. Yokoyama S. Kakuda H. Momose T. Tetrahedron Lett.  1995,  36:  6907 
  • 7d Momose T. Nishio T. Kirihara M. Tetrahedron Lett.  1996,  37:  4987 
  • 7e Kirihara M. Yokoyama S. Kakuda H. Momose T. Tetrahedron  1998,  54:  13943 
  • 8a Makin SM. Kruglikova RI. Tagirov TK. Kharitonova OV. Zh. Org. Khim.  1984,  20:  1182 
  • 8b Mukaiyama T. Banno K. Narasaka K. J. Am. Chem. Soc.  1974,  96:  7503 
  • 8c Kuehne ME. In Enamines: Synthesis, Structure and Reactions   Cook AG. Marcel Dekker; New York: 1969.  p.377 
  • 8d Tietze LF. Eicher TH. Reactionen und Synthesen im Organisch-Chemischen Praktikum und Forschungslaboratorium   Thieme; Stuttgart: 1991.  p.186 
  • 8e For the reviews, see: Takazawa O. Kogami K. Hayashi K. Bull. Chem. Soc. Jpn.  1985,  58:  2427 
  • 8f Ghosh AK. Shevlin M. In Modern Aldol Reactions   Vol. 1:  Mahrwald R. Wiley-VCH; Weinheim: 2004.  p.63 
  • 8g Mukaiyama T. Matsuo J.-I. In Modern Aldol Reactions   Vol. 1:  Mahrwald R. Wiley-VCH; Weinheim: 2004.  p.127 
  • 8h Reetz MT. In Organometallics in Synthesis   Schlosser M. Wiley; New York: 2002.  p.817 
  • 8i Mukaiyama T. In Organic Reactions   Vol. 28:  Dauben WG. John Wiley and Sons; New York: 1982.  p.203 
  • 9 Marx JN. Tetrahedron Lett.  1971,  12:  4957 
  • 10 Miller RD. McKean DR. Tetrahedron Lett.  1979,  20:  2305 
  • 16a Nakamura E. Aoki S. Sekiya K. Oshino H. Kuwajima I. J. Am. Chem. Soc.  1987,  109:  8056 
  • 16b Kasatkin A. Sato F. Tetrahedron Lett.  1995,  36:  6079 
  • 16c Casey CP. Strotman NA. Can. J. Chem.  2006,  84:  1208 
  • 18a Späth E. Darling SF. Ber. Dtsch. Chem. Ges. B  1930,  63:  737 
  • 18b Crombie L. Dandegaonker SH. Simpson KB. J. Chem. Soc.  1955,  1025 
  • 18c Takahashi M. Osawa K. Ueda J. Okada K. Yakugaku Zasshi: J. Pharm. Soc. Jpn.  1976,  96:  1000 
  • 18d Vig OP. Aggarwal RC. Sharma ML. Sharma SD. Indian J. Chem., Sect. B.: Org. Chem. Incl. Med. Chem.  1979,  17:  558 
  • 18e Gannett PM. Nagel DL. Reilly PJ. Lawson T. Sharpe J. Toth B. J. Org. Chem.  1988,  53:  1064 
  • 18f Kaga H. Miura M. Orito K. J. Org. Chem.  1989,  54:  3477 
  • 18g Kaga H. Goto K. Fukuda T. Orito K. Biosci., Biotechnol., Biochem.  1992,  56:  946 
  • 18h Kaga H. Goto K. Takahashi T. Hino M. Tokuhashi T. Orito K. Tetrahedron  1996,  52:  8451 
  • 22a

    Prepared by passing a stream of gaseous HI, generated by dropping 57% HI upon P2O5. [²²b] The concentration of HI in the obtained solution was determined after its aqueous workup by titration with sodium hydroxide.

  • 22b Dillon RT. Young WG. J. Am. Chem. Soc.  1929,  51:  2389 
11

Compounds 3 could be stored in solution at r.t. for a few hours without noticeable decomposition.

12

General Procedure for the Preparation of (n+3)-Alkylbicyclo[ n .1.0]alkan-1-ols 1 in the Presence of TMSCl as Activating Reagent (Procedure A)
Chlorotrimethylsilane (6.3 mL, 50 mmol) was added to the suspension of zinc dust (3.25 g, 50 mmol) in THF (25 mL), the resulted mixture was sealed with a rubber septum and stirred for 5-10 min. An equivalent amount of solution of HI in dry benzene (ca. 0.5-1.5 M) [²²] was added in 1-2 min to the solution of an unsaturated ketone 2 (25 mmol) in dry benzene (15 mL). Freshly prepared red-brown solutions of β-iodo ketones 3 were added in one portion within 1-2 min via syringe to the suspension of zinc dust. After a few minutes an exothermic reaction started, and the reaction mixture became colorless. When the reaction was completed (1-2 h, TLC monitoring) the mixture was poured into sat. solution of NH4Cl (50 mL), the organic layer was separated, and the aqueous phase was extracted with Et2O (3 × 15 mL). The combined organic phases were washed with sat. solutions of NaHCO3, NaCl, and dried with Na2SO4. Solvent was removed under reduced pressure, and compounds 1 were isolated as colorless oils or white crystalline solids by column chromatography over silica gel, treated with Et3N (ca. 0.1 mL per 2 g of SiO2; eluent: PE-EtOAc; see Table  [¹] ).

13

¹H NMR spectra of the solutions of β-iodo ketones 3 demonstrated the absence of the olefinic proton signals of starting compounds 2. The multiplet signals from protons of CHI groups in diastereomeric β-iodo ketones were observed at δ = 4.0-4.5 ppm.

14

Stereochemical configurations for compounds 1a were confirmed by 1D NOESY experiments, which were carried out with their trimethylsilyl ethers 4a. Irradiation of signal of TMS group led to enhancement of signals from both cyclopropane protons at δ = 1.06 and 1.37 ppm in the case of endo-isomer, whereas in the same experiment for exo-isomer the signal of cyclopropane proton at δ = 0.87 ppm and the signals of ethyl CH2 group (δ = 1.22 and 1.53 ppm) were enhanced. Values of ³ J coupling constants between the cyclopropyl protons (J = 4.0 Hz and 7.3 Hz for exo- and endo-isomers of 1a, respectively) are also agreed with the stereochemical assignment.

15

Analytical Data of Selected Compounds 2 exo -6-Ethylbicyclo[3.1.0]hexan-1-ol ( exo -1a)
Colorless oil. ¹H NMR (400 MHz, CDCl3): δ = 0.69 (dt, J 1 = 7.2 Hz, J 2 = 4.0 Hz, 1 H), 0.87 (t, J = 4.0 Hz, 1 H), 0.99 (t, J = 7.3 Hz, 3 H), 1.12 (m, 1 H), 1.35-1.57 (m, 3 H), 1.60 (br s, 1 H, OH), 1.65 (m, 1 H), 1.85 (m, 1 H), 1.92-1.98 (m, 2 H). ¹³C NMR (100 MHz, CDCl3): δ = 14.37, 20.44, 21.79, 26.80, 26.90, 29.54, 34.49, 68.02. IR (CCl4) = 3603, 3400, 3027 cm. Anal. Calcd for C8H14O (126.20): C, 76.14; H, 11.18. Found: C, 76.30; H, 11.10.
endo -6-Ethylbicyclo[3.1.0]hexan-1-ol ( endo -1a)
Colorless oil. ¹H NMR (400 MHz, CDCl3): δ = 1.00 (t, J = 7.3 Hz, 3 H), 1.13 (m, 1 H), 1.18-1.41 (m, 4 H), 1.46 (ddd, J 1 = 12.5 Hz, J 2 = 9.7 Hz, J 3= 2.5 Hz, 1 H), 1.86 (m, 1 H), 1.96-2.13 (m, 4 H). ¹³C NMR (100 MHz, CDCl3): δ = 14.54, 16.55, 24.22, 24.92, 29.26, 31.97, 32.10, 69.41. IR (CCl4) = 3596, 3338, 3027. Anal. Calcd for C8H14O (126.20): C, 76.14; H, 11.18. Found: C, 76.33; H, 11.28. exo -7-Isopropylbicyclo[4.1.0]heptan-1-ol ( exo -1e)
Colorless crystalls, mp 52.4-53.1 ˚C. ¹H NMR (400 MHz, CDCl3): δ = 0.22 (dd, J 1 = 6.0, J 2 = 9.9 Hz, 1 H), 0.70 (ddd, J 1 = 1.6 Hz, J 2 = 6.0 Hz, J 3 = 7.8 Hz, 1 H), 0.96 (d, J = 6.7 Hz, 3 H), 1.01 (d, J = 6.7 Hz, 3 H), 1.08 (m, 1 H), 1.21 (m, 2 H), 1.35 (m, 1 H), 1.45 (m, 2 H), 1.71 (br s, 1 H, OH), 1.86 (ddd, J 1 = 5.6 Hz, J 2 = 9.9 Hz, J 3 = 13.1 Hz, 1 H), 1.97 (m, 1 H), 2.05 (m, 1 H). ¹³C NMR (100 MHz, CDCl3): δ = 21.44, 21.79, 22.50, 23.21, 24.47, 24.51, 28.10, 33.04, 37.50, 58.52. IR (CCl4) = 3604, 2995. Anal. Calcd for C10H18O (154.25): C, 77.87; H, 11.76. Found: C, 77.69; H, 11.85.

17

General Procedure for the Preparation of (n+3)-Alkylbicyclo[ n .1.0]alkan-1-ols 1 in the Presence of TiCl(O i -Pr) 3 as Activating Reagent (Procedure B)
A solution TiCl(Oi-Pr)3 in THF (1 M, 25 mmol, 25 mL) was added to the suspension of zinc dust [²³] (3.25 g, 50 mmol) in THF (25 mL). Immediately, a solution of β-iodo ketone 3 (25 mmol) in dry benzene (prepared as described above in procedure A) was added. During few minutes, the reaction mixture spontaneously warmed up and turned dark brown. When the reaction was completed (0.5-1 h, TLC moni-toring), sat. solution of NH4Cl (10 mL) was added to the mixture, precipitate was filtered off and washed thoroughly with Et2O (5 × 15 mL). The filtrate was washed with sat. solution of NaCl, dried with Na2SO4. The solvent was removed under reduced pressure, and compounds 1 (see Table  [¹] , entries 1, 2, 5, and 8) were isolated by column chromatography over silica gel, treated with Et3N (ca. 0.1 mL per 2 g of SiO2; eluent: PE-EtOAc).

19

The fragmentation of trimethylsilyl ether exo-4e was carried out in AcOH in accordance to the procedure, described by Kirihara et al., see ref. 7e. Cyclopropanol exo-1e under these conditions afforded acid 6 in 50-60% yield.

20

Spectral data are consistent with those previously reported for this compound in ref. 18h. On the basis of NMR and GC data, the stereochemical purity of trans-configured carbon-carbon double bond in acid 6 was more than 99%.

21

Spectral data are consistent with those previously reported for this compound in ref. 18h.

23

Zinc dust was previously activated with few drops of DBE or TMSCl.