RSS-Feed abonnieren
DOI: 10.1055/s-0029-1219588
A Facile, One-Pot Synthesis of Functionalized Spiro-Oxindoles via Vinylogous Aldol Reaction of Vinyl Malononitriles with Isatin Derivatives in Aqueous Media
Publikationsverlauf
Publikationsdatum:
16. März 2010 (online)

Abstract
A novel, one-pot approach to functionalized spirocyclic oxindoles has been developed by using vinyl malononitriles and isatin derivatives via vinylogous aldol reaction in aqueous media catalyzed by triethylamine.
Key words
isatin - vinyl malononitrile - vinylogous aldol condensation - one-pot tandem reaction - spirocyclic oxindoles
- 1
Carey FA.Sundberg RJ. Advanced Organic Chemistry 4th ed.: Kluwer; New York: 2000. p.57 - 2
Fuson RC. Chem. Rev. 1935, 16: 1 -
3a
Denmark SE.Heemstra JRJr.Beutner GL. Angew. Chem. Int. Ed. 2005, 44: 4682 -
3b
Casiraghi G.Zanardi F. Chem. Rev. 2000, 100: 1929 - 4
Bur SK.Martin SF. Tetrahedron 2001, 57: 3221 -
5a
Chen Y.-C.Xue D.Deng J.-G.Cui X.Zhu J.Jiang Y.-Z. Tetrahedron Lett. 2004, 45: 1555 -
5b
Xue D.Chen Y.-C.Cui X.Wang Q.-W.Zhu J.Deng J.-G. J. Org. Chem. 2005, 70: 3584 -
6a For
similar work by Jørgensen, see:
Xue D.Chen Y.-C.Cun L.-F.Wang Q.-W.Zhu J.Deng J.-G. Org. Lett. 2005, 7: 5293 -
6b
Poulsen TB.Alemparte C.Jørgensen KA. J. Am. Chem. Soc. 2005, 127: 11614 -
6c
Poulsen TB.Bell M.Jørgensen KA. Org. Biomol. Chem. 2006, 4: 63 - 7 For a recent review on vinylogous
reactions, see:
Denmark SEJr.Heemstra JR.Beutner GL. Angew. Chem. Int. Ed. 2005, 44: 4682 - 8
Babu TH.Joseph AA.Muralidharan D.Perumal PT. Tetrahedron Lett. 2010, 51: 994 -
9a
Kosuge T.Zenda H.Ochiai A.Masaki N.Noguchi M.Kimura S.Narita H. Tetrahedron Lett. 1972, 2545 -
9b
Jossang A.Jossang P.Hadi HA.Sevenet T.Bodo B. J. Org. Chem. 1991, 56: 6527 -
9c
James MNG.Williams GJB. Can. J. Chem. 1972, 50: 2407 -
9d
Hilton ST.Ho TCT.Pljevaljcic G.Jones K. Org. Lett. 2000, 2: 2639 -
9e
Elderfield RC.Gilman RE. Phytochemistry 1972, 11: 339 -
9f
Overman LE.Rosen MD. Angew. Chem. Int. Ed. 2000, 39: 4596 -
9g
Lerchner A.Carriera EM. J. Am. Chem. Soc. 2002, 124: 14826 -
9h
vonKyburz R.Schopp E.Bick IRC.Hesse M. Helv. Chim. Acta 1981, 64: 2555 - For selected examples, see:
-
10a
Ding K.Lu Y.Nikolovska-Coleska Z.Qiu S.Ding Y.Gao W.Stuckey J.Krajewski K.Roller PP.Tomita Y.Parrish DA.Deschamps JR.Wang S. J. Am. Chem. Soc. 2005, 127: 10130 -
10b
Chen C.Li X.Neumann CS.Lo MM.-C.Schreiber SL. Angew. Chem. Int. Ed. 2005, 44: 2249 -
10c
Bella M.Kobbelgaard S.Jørgensen KA. J. Am. Chem. Soc. 2005, 127: 3670 -
10d
Ready JM.Reisman SE.Hirata M.Weiss MM.Tamaki K.Ovaska TV.Wood JL. Angew. Chem. Int. Ed. 2004, 43: 1270 -
10e
Lo MM.-C.Neumann CS.Nagayama S.Perlstein EO.Schreiber SL. J. Am. Chem. Soc. 2004, 126: 16077 -
10f
Rehn S.Bergman J.Stensland B. Eur. J. Org. Chem. 2004, 413 -
10g
Nishikawa T.Kajii S.Isobe M. Synlett 2004, 2025 -
10h
Williams RM.Cao J.Tsujishima H.Cox RJ. J. Am. Chem. Soc. 2003, 125: 12172 -
10i
Bagul TD.Lakshmaiah G.Kawabat T.Fuji K. Org. Lett. 2002, 4: 249 -
10j
Lerchner A.Carreira EM. J. Am. Chem. Soc. 2002, 124: 14826 -
10k
Lin X.Weinreb SM. Tetrahedron Lett. 2001, 42: 2631 -
10l
Edmondson S.Danishefsky SJ. Angew. Chem. Int. Ed. 1998, 37: 1138 -
11a
Nair V.Biju AT.Vinod AU.Suresh E. Org. Lett. 2005, 7: 5139 -
11b
Basavaiah D.Rao JS.Reddy RJ.Rao AJ. Chem. Commun. 2005, 2621 -
11c
Nair V.Mathai S.Mathew SC.Rath NP. Tetrahedron 2005, 61: 2849 -
11d
Zhang Y.Wang L.Zhang M.Fun H.-K.Xu J.-H. Org. Lett. 2004, 6: 4893 -
11e
Nair V.Mathai S.Augustine A.Radhakrishnan SVKV. Synthesis 2004, 2617 -
11f
Muthusamy S.Gunanathan C.Nethaji M. J. Org. Chem. 2004, 69: 5631 -
11g
Smet M.Van Oosterwijck C.Van Hecke K.Van Meervelt L.Vandendriessche A.Dehaen W. Synlett 2004, 2388 -
11h
Nair V.Rajesh C.Dhanya R.Rath NP. Tetrahedron Lett. 2002, 43: 5349 -
11i
Lee S.Hartwig J. J. Org. Chem. 2001, 66: 3402 -
11j
Tobisu M.Chatani N.Asaumi T.Amako K.Ie Y.Fukumoto Y.Murai S. J. Am. Chem. Soc. 2000, 122: 12663 -
12a
Franz AK.Dreyfuss PD.Schreiber SL. J. Am. Chem. Soc. 2007, 129: 1020 -
12b
Alcaide B.Almendros P.Rodriguez-Acebes R. J. Org. Chem. 2006, 71: 2346 -
12c
Wang L.Zhang Y.Hu H.-Y.Fun H.-K.Xu J.-H.
J. Org. Chem. 2005, 70: 3850 -
12d
Smet M.Oosterwijck CV.Hecke KV.Meervelt LV.Vandendriessche A.Dehaen W. Synlett 2004, 2388 -
12e
Muthusamy S.Gunanathan C.Nethaji M. J. Org. Chem. 2004, 69: 5631 -
13a
Savitha G.Niveditha SK.Muralidharan D.Perumal PT. Tetrahedron Lett. 2007, 48: 2943 -
13b
Shanthi G.Perumal PT. Tetrahedron Lett. 2007, 48: 6785 -
13c
Shanthi G.Subbulakshmi G.Perumal PT. Tetrahedron 2007, 63: 2057 -
13d
Shanthi G.Perumal PT. Synlett 2008, 18: 2791 -
13e
Shanthi G.Perumal PT. Tetrahedron Lett. 2009, 50: 3959 -
13f
Babu TH.Shanthi G.Perumal PT. Tetrahedron Lett. 2009, 50: 2881 -
13g
Selvam NP.Babu TH.Perumal PT. Tetrahedron 2009, 65: 8524
References and Notes
General Procedure
for the Synthesis of Spiro-Oxindole 3c: To a stirred solution
of vinyl malononitrile 2a (1 mmol) and
Et3N (1 mmol) in H2O-EtOH
(1:1; 10 mL) at r.t., was added isatin 1c (1 mmol)
and stirring was continued for about 25 min. After the reaction
was complete as indicated by TLC, the solvent mixture was evaporated
under vacuo. The crude product, on chromatographic purification
over silica gel (Merck; 100-200 mesh; EtOAc-hexane,
3:7), yielded the desired spiro-oxindole in 87% as a single diastereomer.
Spectral Data of Spiro-Oxindole 3c (Table 2,
entry 3): Yield: 87%; off-white solid; mp 196 ˚C. ¹H
NMR (500 MHz, DMSO-d
6): δ = 0.37
(q, J = 13
Hz, 1 H), 1.37 (m, 2 H), 1.57 (m, 1 H),
1.88 (m, 1 H), 2.04 (m, 1 H), 2.83 (d, J = 9.9 Hz,
1 H), 4.32 (ABq, J = 16.8
Hz, 2 H), 5.16 (t, J = 9.15
Hz, 2 H), 5.46 (s, 1 H), 5.80 (m, 1 H),
7.03 (s, 2 H, D2O exchangeable), 7.06 (d, J = 7.65 Hz,
1 H), 7.09 (d, J = 7.65
Hz, 1 H), 7.13 (d, J = 7.65
Hz, 1 H), 7.37 (t, J = 7.65
Hz, 1 H). ¹³C NMR (125 MHz,
DMSO-d
6): δ = 21.3,
22.9, 24.7, 38.1, 42.3, 60.9, 81.9, 110.4, 114.5, 117.9, 118.7,
123.9, 125.1, 125.3, 125.5, 131.3, 131.7, 143.3, 162.1, 171.2. IR
(KBr): 3403, 3311, 3242, 3198, 2195, 1706, 1636, 1422, 1377, 763
cm-¹. MS (ESI): m/z = 334 [M + 1]. Anal.
Calcd for C20H19N3O2:
C, 72.05; H, 5.74; N, 12.60. Found: C, 71.09; H, 5.61; N, 12.53.
Crystallographic data for compound 3d in this paper have been deposited with the Cambridge Crystallographic Data centre as supplemental publication No. CCDC 761167. Copies of the data can be obtained, free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44 (1223)336033 or email: deposit@ccdc.cam.ac.uk]
16Spectral Data of Compound 6 (Table 2, entry 17): Yield: 75%; yellow solid; mp 192 ˚C. ¹H NMR (500 MHz, DMSO-d 6): δ = 0.15 (q, J = 12.2 Hz, 1 H), 1.11 (m, 1 H), 1.35 (m, 2 H), 1.81 (m, 1 H), 1.98 (m, 1 H), 2.95 (s, 1 H), 5.48 (s, 1 H), 6.97 (s, 2 H, D2O exchangeable), 7.45 (d, J = 6.9 Hz, 1 H), 7.72 (t, J = 7.65 Hz, 1 H), 7.85 (t, J = 7.65 Hz, 1 H), 8.05 (dd, J = 6.9, 8.4 Hz, 2 H), 8.33 (d, J = 8.4 Hz, 1 H). ¹³C NMR (125 MHz, DMSO-d 6): δ = 21.3, 23.2, 24.6, 38.0, 61.0, 85.2, 114.3, 119.0, 122.5, 123.3, 126.2, 127.3, 129.5, 129.8, 130.3, 130.7, 133.8, 134.5, 142.5, 162.9, 198.3. IR (KBr): 3421, 3322, 3194, 2927, 2193, 1713, 1632, 1581, 1010, 783 cm-¹. MS (ESI): m/z = 329 [M + 1]. Anal. Calcd for C20H19N3O2: C, 72.05; H, 5.74; N, 12.60. Found: C, 71.09; H, 5.61; N, 12.53.