Subscribe to RSS
DOI: 10.1055/s-0029-1219787
Biosynthesis of Resveratrol Dimers by Regioselective Oxidative Coupling Reaction
Publication History
Publication Date:
23 March 2010 (online)
Abstract
A wide array of natural resveratrol dimers was prepared by the regioselective oxidative coupling reaction of 3,5-di-(tert-butyl)resveratrol using several types of metal oxidants (Ag2O, Ag2CO3, MnO2, and FeCl3˙6H2O) in different solvent systems (benzene-acetone and dichloromethane). Subsequent debutylation of these coupling products resulted in racemic pallidol and ampelosin F.
Key words
resveratrol dimmer - pallidol - ampelosin F - oxidative coupling - biosynthesis
- Supporting Information for this article is available online:
- Supporting Information
-
1a
Shen T.Wang X.-N.Lou H.-X. Nat. Prod. Rep. 2009, 26: 916 -
1b
Lin M.Yao CS. Stud. Nat. Prod. Chem. 2006, 33: 601 - 2
Li XC.Ferreira D. Tetrahedron 2003, 59: 1501 -
3a
Snyder SA.Zografos AL.Lin Y.-Q. Angew. Chem. Int. Ed. 2007, 46: 8186 -
3b
Snyder SA.Breazzano SP.Ross AG.Lin Y.-Q.Zografos AL. J. Am. Chem. Soc. 2009, 131: 1753 - 4
Jeffrey JL.Sarpong R. Tetrahedron Lett. 2009, 50: 1969 -
5a
Langcake P.Pryce RJ. J. Chem. Soc., Chem. Commun. 1977, 208 -
5b
Hirano Y.Kondo R.Sakai K. J. Wood Sci. 2002, 48: 64 -
5c
Takaya Y.Terashima K.Ito J.He Y.-H.Tateoka M.Yamaguchi N.Niwa M. Tetrahedron 2005, 61: 10285 -
6a
Breuil AC.Adrian M.Pirio N.Meunier P.Bessis R.Jeandet P. Tetrahedron Lett. 1998, 39: 537 -
6b
Cichewicz RH.Kouzi SA.Hamann MT. J. Nat. Prod. 2000, 63: 29 -
6c
Nicotra S.Cramarossa MR.Mucci A.Pagnoni UM.Riva S.Forti L. Tetrahedron 2004, 60: 595 -
7a
Huang K.-S.Lin M.Wang Y.-H. Chin. Chem. Lett. 1999, 10: 817 -
7b
Sako M.Hosokawa H.Ito T.Iinuma M. J. Org. Chem. 2004, 69: 2598 -
7c
Takaya Y.Terashima K.Ito J.He Y.-H.Tateoka M.Yamaguchi N.Niwa M. Tetrahedron 2005, 61: 10285 - 8
Li WL.Li H.Li Y.Hou ZJ. Angew. Chem. Int. Ed. 2006, 45: 7609 - 12
Velu SS.Buniyamin I.Ching LK.Feroz F.Noorbatcha I.Gee LC.Awang K.Wahab IA.Weber J.-FF. Chem. Eur. J. 2008, 14: 11376 -
13a
Tashiro M.Itoh T.Yoshiya H.Fukata G. Org. Prep. Proced. Int. 1984, 16: 155 -
13b
Sartori G.Bigi F.Maggi R.Porta C. Tetrahedron Lett. 1994, 35: 7073 -
13c
Saleh SA.Tashtoush HL. Tetrahedron 1998, 54: 14157 -
16a
Khan MA.Nabi SG.Prakash S.Zaman A. Phytochemistry 1986, 25: 1945 -
16b
Oshima Y.Ueno Y.Hisamichi K.Takeshita M. Tetrahedron 1993, 49: 5801
References and Notes
The spectra data of compound 8 were completely consistent with literature data.8
10
Analytical Data
for Compound 9
Pale yellow amorphous powder. IR (neat):
3641, 3348, 2957, 1688, 1605, 1510, 1432, 1238, 1018 cm-¹. ¹H
NMR (400 MHz, acetone-d
6): δ = 1.40 (s,
36 H, t-Bu), 3.91 (br s, 2 H, H-8, H-8′),
4.58 (br s, 2 H, H-7, H-7′), 5.84 (br s, 2H, OH), 6.18
(d, J = 2.0
Hz, 2 H, H-14, H-14′), 6.62 (d, J = 1.2 Hz,
2 H, H-12, H-12′), 7.06 (br s, 4 H, H-3, H-5, H-3′,
H-5′), 7.88 (br s, 2 H, OH), 8.09 (br s, 2 H, OH). ¹³C
NMR (100 MHz, acetone-d
6): δ = 30.8,
35.0, 54.5, 60.5, 102.3, 103.3, 123.4, 124.4, 137.6, 137.8, 150.2,
152.7, 155.3, 159.1. ESI-HRMS: m/z calcd
for C44H54O6 + H: 679.3993;
found: 679.3999.
Analytical Data
for Compound 10
Pale yellow amorphous powder. IR (neat):
3420, 2852, 1628, 1530, 1472, 1308, 1054 cm-¹. ¹H
NMR (400 MHz, acetone-d
6): δ = 1.25
(s, 18 H, t-Bu), 1.40 (s, 18 H, t-Bu), 3.28 (br s, 1 H, H-8), 3.67 (br
s, 1 H, H-7′), 4.14 (br s, 1 H, H-8′), 4.22 (br
s, 1 H, H-7), 5.73 (br s, 1 H, OH), 5.83 (br s, 1 H, OH), 6.08 (d, J = 1.6 Hz,
1 H, H-14), 6.15 (d, J = 2.0 Hz,
1 H, H-14′), 6.44 (d, J = 2.0
Hz, 1 H, H-12′), 6.50 (d, J = 1.6
Hz, 1 H, H-12), 6.71 (br s, 2 H, H-2′, H-6′),
7.12 (br s, 2 H, H-2, H-6), 7.35 (br s, 1 H, OH), 7.92 (br s, 1
H, OH), 7.93 (br s, 1 H, OH), 8.01 (br s, 1 H, OH). ¹³C
NMR (100 MHz, acetone-d
6): δ = 30.6,
30.8, 35.0, 35.1, 48.0, 49.3, 51.9, 59.6, 101.6, 104.3, 105.7, 114.2,
124.8, 125.3, 128.2, 135.8, 137.4, 137.6, 138.2, 147.4, 147.8, 152.7,
153.0, 157.1, 157.9, 158.5. ESI-HRMS: m/z calcd
for C44H54O6 + H: 679.3993;
found: 679.3988.
Representative
Procedure
A solution of AlCl3 (0.1 g, 0.72
mmol) in MeNO2 (1 mL) was added to a solution of compound 9 (46 mg, 0.06 mmol) in dry toluene (10
mL) at 60 ˚C. The reaction mixture was stirred for 30 min.
Then quenched with ice-water (5 mL), and extracted with EtOAc. The
combined organic layer was washed with sat. brine and then dried
over MgSO4. The solvent was removed under reduced pressure
and the residue puried on a silica gel (CH2Cl2-MeOH,
15:1) to afford (±)-pallidol (5,
24 mg, 85%) as a pale yellow amorphous powder. IR (neat):
3402, 2956, 2826, 1638, 1508, 1462, 1246, 1080 cm-¹. ¹H
NMR (400 MHz, acetone-d
6): δ = 3.80 (br
s, 2 H, H-8, H-8′), 4.56 (br s, 2 H, H-7, H-7′),
6.18 (d, J = 2.0
Hz, 2 H, H-14, H-14′), 6.61 (d, J = 2.0
Hz, 2 H, H-12, H-12′), 6.70 (d, J = 8.4
Hz, 4 H, H-3, H-3′, H-5, H-5′), 6.97 (d, J = 8.4 Hz,
4 H, H-2, H-2′, H-6, H-6′), 7.84 (br s, 2 H, OH),
8.06 (br s, 2 H, OH), 8.08 (br s, 2 H, OH). ¹³C
NMR (100 MHz, acetone-d
6):
δ = 54.0, 60.5, 102.5, 103.4,
115.8, 123.2, 129.0, 137.7, 150.3, 155.3, 156.3, 159.4. ESI-HRMS: m/z calcd for C28H22O6 + H:
455.1489; found: 455.1490.
Analytical Data
for ()-Ampelosin F (6)
Pale
yellow amorphous powder. IR (neat): 3380, 2854, 1628, 1495, 1354,
1205, 1055 cm-¹. ¹H
NMR (400 MHz, acetone-d
6): δ = 3.35
(br s, 1 H, H-8), 3.64 (br s, 1 H, H-7′), 4.12 (br s, 1
H, H-8′), 4.19 (br s, 1 H, H-7), 6.06 (d, J = 2.0 Hz,
1 H, H-14), 6.15 (d, J = 2.0
Hz, 1 H, H-14′), 6.44 (d, J = 2.0
Hz, 1 H, H-12′), 6.52 (d, J = 2.0
Hz, 1 H, H-12), 6.56 (d, J = 8.0
Hz, 2 H, H-3′, H-5′), 6.75 (d, J = 8.0
Hz, 2 H, H-3, H-5), 6.78 (d, J = 8.0
Hz, 2 H, H-2′, H-6′), 7.08 (d, J = 8.0 Hz,
2 H, H-2, H-6), 7.48 (br s, 1 H, OH), 7.88 (br s, 1 H, OH), 7.97
(br s, 1 H, OH), 8.03 (br s, 1 H, OH), 8.04 (br s, 1 H, OH), 8.10
(br s, 1 H, OH). ¹³C NMR (100 MHz,
acetone-d
6): δ = 46.9,
49.4, 50.2, 58.0, 101.6, 101.9, 104.0, 105.4, 113.0, 113.1, 115.3,
127.5, 129.0, 129.6, 135.2, 138.1, 147.0, 147.3, 152.9, 156.0, 156.9,
157.5, 158.0, 158.4. ESI-HRMS: m/z calcd
for C28H22O6 + H: 455.1489;
found: 455.1496.