Subscribe to RSS
DOI: 10.1055/s-0029-1245936
© Georg Thieme Verlag KG Stuttgart · New York
Estimation of Longitudinal Shear Strain in the Carotid Arterial Wall Using Ultrasound Radiofrequency Data
Schätzung der Scherdehnung in der Arteria carotis unter Verwendung von UltraschallhochfrequenzdatenPublication History
received: 6.4.2010
accepted: 18.11.2010
Publication Date:
11 January 2011 (online)
Zusammenfassung
Ziel: Der primäre Auslöser für einen Myokardinfarkt oder Schlaganfall ist eine Mobilisierung von arteriosklerotischen Plaques. Es wird vermutet, dass Scherdehnungsmechanismen (Shear Strain) in der Adventitia die Entwicklung hin zu brüchigen, instabilen Plaques initiiert und/oder stimuliert. Daher könnte die Untersuchung der Scherdehnung eine Prognoseeinschätzung bezüglich der Entwicklung von instabilen Plaques ermöglichen. Material und Methoden: Mithilfe von Simulationen und Phantom-Experimenten wurde die Scherdehnung mittels Radiofrequenz(RF)- und Envelope-basierten Methoden ermittelt und mit den angewandten Werten verglichen. Zusätzlich wurden Scherdehnungssmessungen in der Adventitia von 6 gesunden Probanden vorgenommen. Ergebnisse: In beiden Experimenten war die Varianz der RF-basierten Werte deutlich kleiner als die der Envelope-basierten Werte (Wilcoxon, p < 0,05). Die Periodizität der Scherdehnungswerte der Probanden stimmte gut mit dem jeweiligen Herzzyklus überein. Die ermittelten Werte waren bereits zuvor publizierten Daten vergleichbar. Darüber hinaus war die Signal-Rausch-Rate der Scherdehnungswerte in der hinteren Gefäßwand, die mit der RF-basierten Methode ermittelt wurden, signifikant höher als die auf Basis der Envelope-Methode ermittelten Werte (Wilcoxon, p < 0,05). Schlussfolgerung: Nicht invasiver Ultraschall mit radiofrequenzbasierten Methoden scheint geeignet zu sein, die Scherdehnung in der Adventitia der Arteria carotis zu bestimmen.
Abstract
Purpose: The primary trigger for myocardial infarction and stroke is destabilization of atherosclerotic plaques. It is hypothesized that shear strain in the adventitia initiates and/or stimulates development of these plaques into rupture-prone, vulnerable plaques. Therefore, assessment of shear strain might yield a prognosis for the development of vulnerable plaques. Materials and Methods: In simulations and phantom experiments, longitudinal shear strain was estimated using RF and envelope-based methods and compared to the applied values. Additionally, longitudinal shear strain estimates in the adventitia of six healthy volunteers were determined. Results: In both experiments, the variance of the RF-based estimates was significantly smaller than that of the envelope-based estimates (Wilcoxon, p < 0.05). The periodicity of these estimates corresponded well with the cardiac cycle. The estimated values were found to be similar to previously published data. Furthermore, the signal-to-noise ratio of the shear strain estimate in the posterior wall based on RF-data was significantly higher (Wilcoxon, p 0 < 0.05) than that based on envelope-data. Conclusion: In conclusion, noninvasive ultrasound strain imaging using radiofrequency signals appeared to allow adequate estimation of longitudinal shear strain in the adventitial layer of the carotid artery wall.
Key words
carotid arteries - ultrasound - arteriosclerosis
References
- 1 Lloyd-Jones D, Adams R, Carnethon M et al. Heart disease and stroke statistics – 2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2009; 119 e21-e181
- 2 Weintraub H S. Identifying the vulnerable patient with rupture-prone plaque. Am J Cardiol. 2008; 101 3F-10F
- 3 Kolodgie F D, Burke A P, Skorija K S et al. Lipoprotein-associated phospholipase A 2 protein expression in the natural progression of human coronary atherosclerosis. Arterioscler Thromb Vasc Biol. 2006; 26 2523-2529
- 4 Korte C L, Steen van der A FW. Intravascular ultrasound elastography: an overview. Ultrasonics. 2002; 40 859-865
- 5 Schaar J A, Korte de C L, Mastik de F et al. Three-dimensional palpography of human coronary arteries. Ex vivo validation and in-patient evaluation. Herz. 2005; 30 125-133
- 6 Maurice R L, Daronat M, Ohayon J et al. Non-invasive high-frequency vascular ultrasound elastography. Physics in Medicine and biology. 2005; 50 1611-1628
- 7 Ribbers H, Lopata R G, Holewijn S et al. Noninvasive two-dimensional strain imaging of arteries: validation in phantoms and preliminary experience in carotid arteries in vivo. Ultrasound Med Biol. 2007; 33 530-540
- 8 Hansen H H, Lopata R G, De Korte C L. Noninvasive carotid strain imaging using angular compounding at large beam steered angles: validation in vessel phantoms. IEEE Trans Med Imaging. 2009; 28 872-880
- 9 Idzenga T, Pasterkamp G, De Korte C. Shear strain in the adventitial layer of the arterial wall facilitates development of vulnerable plaques. Bioscience Hypotheses. 2009; 2 339-342
- 10 Hasaneen N A, Zucker S, Lin R Z et al. Angiogenesis is induced by airway smooth muscle strain. Am J Physiol Lung Cell Mol Physiol. 2007; 293 L1059-L1068
- 11 Kou B, Zhang J, Singer D R. Effects of cyclic strain on endothelial cell apoptosis and tubulogenesis are dependent on ROS production via NAD(P)H subunit p22phox. Microvasc Res. 2009; 125-133
- 12 Morrow D, Cullen J P, Cahill P A et al. Cyclic strain regulates the Notch/CBF-1 signaling pathway in endothelial cells: role in angiogenic activity. Arterioscler Thromb Vasc Biol. 2007; 27 1289-1296
- 13 Techavipoo U, Chen Q, Varghese T et al. Noise reduction using spatial-angular compounding for elastography. IEEE Trans Ultrason Ferroelectr Freq Control. 2004; 51 510-520
- 14 Von Offenberg S N, Cummins P M, Cotter E J et al. Cyclic strain-mediated regulation of vascular endothelial cell migration and tube formation. Biochem Biophys Res Commun. 2005; 329 573-582
- 15 Moreno P R, Purushothaman K R, Fuster V et al. Plaque neovascularization is increased in ruptured atherosclerotic lesions of human aorta: implications for plaque vulnerability. Circulation. 2004; 110 2032-2038
- 16 Arbustini E, Morbini P, D’Armini A M et al. Plaque composition in plexogenic and thromboembolic pulmonary hypertension: the critical role of thrombotic material in pultaceous core formation. Heart. 2002; 88 177-182
- 17 Ku D N. Blood flow in arteries. Annual Review of Fluid Mechanics. 1997; 29 399-434
- 18 Nichols W W, O’Rourke M F. McDonald’s Blood Flow in Arteries. London; 1998
- 19 Cinthio M, Ahlgren A R, Jansson T et al. Evaluation of an ultrasonic echo-tracking method for measurements of arterial wall movements in two dimensions. IEEE Trans Ultrason Ferroelectr Freq Control. 2005; 52 1300-1311
- 20 Cinthio M, Jansson T, Persson H W et al. Non-invasive measurements of longitudinal strain of the arterial wall. Proceedings IEEE Ultrasonics symposium. 2007; 10 570-572
- 21 Cinthio M, Ahlgren A R, Bergkvist J et al. Longitudinal movements and resulting shear strain of the arterial wall. Am J Physiol Heart Circ Physiol. 2006; 291 H394-H402
- 22 Persson M, Ahlgren A R, Eriksson A et al. Non-invasive measurement of arterial longitudinal movement. Proceedings IEEE Ultrasonics symposium. 2002; 5 1783-1786
- 23 Persson M, Ahlgren A R, Jansson T et al. A new non-invasive ultrasonic method for simultaneous measurements of longitudinal and radial arterial wall movements: first in vivo trial. Clin Physiol Funct Imaging. 2003; 23 247-251
- 24 Shi H, Mitchell C C, McCormick M et al. Preliminary in vivo atherosclerotic carotid plaque characterization using the accumulated axial strain and relative lateral shift strain indices. Phys Med Biol. 2008; 53 6377-6394
- 25 Golemati S, Sassano A, Lever M J et al. Carotid artery wall motion estimated from B-mode ultrasound using region tracking and block matching. Ultrasound Med Biol. 2003; 29 387-399
- 26 Lopata R G, Nillesen M M, Hansen H H et al. Performance Evaluation of Methods for two-Dimensional Displacement and Strain Estimation Using Ultrasound Radio Frequency Data. Ultrasound Med Biol. 2009; 796-812
- 27 Konofagou E, Ophir J. A new elastographic method for estimation and imaging of lateral displacements, lateral strains, corrected axial strains and Poisson’s ratios in tissues. Ultrasound Med Biol. 1998; 24 1183-1199
- 28 Chen H, Varghese T. Multilevel hybrid 2D strain imaging algorithm for ultrasound sector/phased arrays. Medical physics. 2009; 36 2098-2106
- 29 Varghese T, Bilgen M, Ophir J. Multiresolution imaging in elastography. IEEE Trans Ultrason Ferroelectr Freq Control. 1998; 45 65-75
- 30 Jensen J A. A model for the propagation and scattering of ultrasound in tissue. J Acoust Soc Am. 1991; 89 182-190
- 31 Ganong W F. Review of medical physiology. Appleton & Lange; 1997 18 ed
- 32 Chu K C, Rutt B K. Polyvinyl alcohol cryogel: an ideal phantom material for MR studies of arterial flow and elasticity. Magn Reson Med. 1997; 37 314-319
- 33 Idzenga T, Pel J JM, Mastrigt van R. A biophysical model of the male urethra: comparing viscoelastic properties of polyvinyl alcohol urethras to male pig urethras. Neurourol Urodyn. 2006; 25 451-460
- 34 Kallel F, Ophir J. A least-squares strain estimator for elastography. Ultrasonic Imaging. 1997; 19 195-208
- 35 Alam S K, Ophir J. Reduction of signal decorrelation from mechanical compression of tissues by temporal stretching: applications to elastography. Ultrasound Med Biol. 1997; 23 95-105
- 36 Lopata R GP, Nillesen M M, Gerrits I H et al. 3D cardiac strain imaging using a novel tracking method. eMBEC Proceedings. 2009; ; in press
Dr. Tim Idzenga
Dept. of Pediatrics, Clinical Physics Laboratory, Radboud University Nijmegen Medical Centre
PO Box 9101
6500 HB Nijmegen
Netherlands
Phone: ++ 31/24/3 66 89 68
Fax: ++ 31/24/3 61 64 28
Email: t.idzenga@cukz.umcn.nl