Zusammenfassung
Ziel: Die angeborene valvuläre Aortenstenose (VAS) verursacht eine linksventikuläre Drucküberlastung. Klinisch wird der Schweregrad der Stenose durch den Druckabfall in der verengten Klappe eingeteilt (Druckgradient). Dieser Marker ist vom hämodynamischen Zustand abhängig und gibt keinen Hinweis auf die Leistung des Myokards. Diese Studie wurde durchgeführt, um die Möglichkeiten der zweidimensionalen Strain-Echokardiografie (2DSTE) zur Entdeckung von Veränderungen der myokardialen Funktion bei Kindern mit angeborener VAS zu untersuchen. Material und Methoden: Insgesamt wurden 86 Patienten (ab Geburt bis zu einem Alter von 18 Jahren) mit isolierter angeborener VAS verschiedenen Schweregrads in diese Studie aufgenommen. Bei keinem der Patienten wurde irgendeine Art von chirurgischer oder Ballon-Intervention durchgeführt. Als Kontrollgruppe dienten 139 gesunde Kinder. Zweidimensionale Cine-loop-Aufnahmen der apikalen Vierkammer, der mittelhöhligen Kurzachsen- und der basalen Kurzachsen-Blicke wurden für die Offline-Analyse digital gespeichert. Sowohl der maximale systolische Längs-, Umfangs- und Radial-Strain, die maximale Strain-Rate-Werte als auch die Zeit bis zum maximalen systolischen Strain (T2P) wurden ermittelt. Mittels 2-facher Varianzanalyse wurde das Verhältnis von VAS-Schweregrad zu 2DSTE-Parametern ermittelt. Ergebnisse: Keiner der Patienten mit normalen echokardiografischen Befunden zeigte eine linksventikuläre systolische Dysfunktion. Alle Strain-Parameter in der Kontrollgruppe unterschieden sich signifikant von denen der VAS-Patienten. Es zeigte sich eine statistisch signifikante umgekehrte Relation zwischen den globalen systolischen Spitzen-Strain-Parametern in alle 3 Richtungen und dem Ausmaß der VAS (p < 0,05). Der lokale maximale systolische Strain im interventrikulären Septum war am meisten betroffen. T 2P zeigte einen signifikanten Anstieg in Zusammenhang mit der Schwere der VAS (p < 0,05). Der Abfall der LV längssystolischen Leistung ging der in anderen Richtungen voraus. Schlussfolgerung: Die 2DSTE ermöglicht die Diagnose von Veränderungen der Myokard-Funktion bei Kindern mit angeborener VAS, bei denen herkömmliche echografische Untersuchungen keinen Hinweis auf eine ventrikuläre systolische Dysfunktion ergeben haben.
Abstract
Purpose: Congenital valvar aortic stenosis (VAS) causes a pressure overload to the left ventricle. In the clinical setting, the severity of stenosis is graded by the pressure drop over the stenotic valve (pressure gradient). This parameter is dependent on the hemodynamic status and does not provide information regarding myocardial performance. This study was undertaken to reveal the potential of two-dimensional strain echocardiography (2DSTE) for the detection of myocardial functional changes due to congenital VAS in children. Materials and Methods: A total of 86 patients (aged from birth to 18 years) with various degrees of isolated congenital VAS were enrolled in this study. None of the patients had undergone any form of surgical or balloon intervention. 139 healthy children served as a control group. Two-dimensional cine-loop recordings of apical 4-chamber, mid-cavity short-axis and basal short-axis views were digitally stored for off-line analysis. Longitudinal, circumferential and radial peak systolic strain and strain rate values were determined as well as the time to peak systolic strain (T2P). Two-way analysis of variance was performed to assess the relationship between VAS severity and 2DSTE parameters. Results: In all patients conventional echocardiographic findings did not indicate systolic left ventricular dysfunction. All strain parameters of the control group were significantly different from those of VAS patients. There was a statistically significant, inverse relationship between global peak systolic strain parameters in all three directions and the degree of VAS (p < 0.05). Local peak systolic strain (rate) in the interventricular septum was most affected. T 2P increased significantly with VAS severity (p < 0.05). The decline in LV longitudinal systolic performance preceded that in other directions. Conclusion: 2DSTE detects alterations in myocardial function in children diagnosed with congenital VAS, whose conventional echocardiographic findings did not indicate ventricular systolic dysfunction.
Key words
child - echocardiography - ultrasound 2D - valvar aortic stenosis - two-dimensional strain echocardiography
References
1
Khalid O, Luxenberg D M, Sable C et al.
Aortic stenosis: the spectrum of practice.
Pediatr Cardiol.
2006;
27
661-669
2
Silka M J, Hardy B G, Menashe V D et al.
A population-based prospective evaluation of risk of sudden cardiac death after operation for common congenital heart defects.
J Am Coll Cardiol.
1998;
32
245-251
3
Bonow R O, Carabello B A, Kanu C et al.
ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to revise the 1998 Guidelines for the Management of Patients With Valvular Heart Disease): developed in collaboration with the Society of Cardiovascular Anesthesiologists: endorsed by the Society for Cardiovascular Angiography and Interventions and the Society of Thoracic Surgeons.
Circulation.
2006;
114
e84-e231
4
Keane J F, Driscoll D J, Gersony W M et al.
Second natural history study of congenital heart defects. Results of treatment of patients with aortic valvar stenosis.
Circulation.
1993;
87
16-27
5
Fratz S, Gildein H P, Balling G et al.
Aortic valvuloplasty in pediatric patients substantially postpones the need for aortic valve surgery.
Circulation.
2008;
117
1201-1206
6
Thomson J DR.
Management of valvar aortic stenosis in children.
Heart.
2004;
90
5-6
7
Dandel M, Hetzer R.
Echocardiographic strain and strain rate imaging – Clinical applications.
Int J Cardiol.
2009;
132
11-24
8
Friedberg M K, Slorach C.
Relation between left ventricular regional radial function and radial wall motion abnormalities using two-dimensional speckle tracking in children with idiopathic dilated cardiomyopathy.
Am J Cardiol.
2008;
102
335-339
9
Amundsen B H, Helle-Valle T, Edvardsen T et al.
Noninvasive Myocardial strain measurement by speckle tracking echocardiography: validation against sonomicrometry and tagged magnetic resonance imaging.
J Am Coll Cardiol.
2006;
47
789-793
10
Leitman M, Lysyansky P, Sidenko S et al.
Two-dimensional strain-a novel software for real-time quantitative echocardiographic assessment of myocardial function.
J Am Soc Echocardiogr.
2004;
17
1021-1029
11
Lang R M, Bierig M, Devereux R B et al.
Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology.
J Am Soc Echocardiogr.
2005;
18
1440-1463
12
Mavinkurve-Groothuis A MC, Weijers G, Groot-Loonen J et al.
Interobserver, intraobserver and intrapatient reliability scores of myocardial strain imaging with two-dimensional echocardiography in patients treated with anthracyclines.
Ultrasound Med Biol.
2009;
35
697-704
13
Cerqueira M D, Weissman N J, Dilsizian V et al.
Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association.
Int J Cardiovasc Imaging.
2002;
18
539-542
14 Berne R M, Levy M N. Physiology. St Louis: Mosby; 1993 ed 3
15
Tei C, Ling L H, Hodge D O et al.
New index of combined systolic and diastolic myocardial performance: a simple and reproducible measure of cardiac function – a study in normals and dilated cardiomyoapathy.
J Cardiol.
1995;
26
357-366
16
Colan S D, Borow K M, Neumann A.
Left ventricular end-systolic wall stress-velocity of fiber shortening relation: a load-independent index of myocardial contractility.
J Am Coll Cardiol.
1984;
4
715-724
17
Devereux R B, Reichek N.
Echocardiographic determination of left ventricular mass in man. Anatomic validation of the method.
Circulation.
1977;
55
613-618
18
Daniels S R, Kimball T R, Morrison J A et al.
Indexing left ventricular mass to account for differences in body size in children and adolescents without cardiovascular disease.
Am J Cardiol.
1995;
76
699-701
19
Foster B J, Mackie A S, Mitsnefes M et al.
A novel method of expressing left ventricular mass relative to body size in children.
Circulation.
2008;
117
2769-2775
20
Bolger A P, Coats A J, Gatzoulis M A.
Congenital heart disease: the original heart failure syndrome.
Eur Heart J.
2003;
24
970-976
21
Pacileo G, Di Salvo G, Limongelli G et al.
Echocardiography in congenital heart disease: usefulness, limits and new techniques.
J Cardiovasc Med.
2007;
8
17-22
22
Strotmann J M, Lengenfelder B, Blondelot J et al.
Functional differences of left ventricular hypertrophy induced by either arterial hypertension or aortic valve stenosis.
Am J Cardiol.
2008;
101
1493-1497
23
Aurigemma G P, Silver K H, Priest M A et al.
Geometric changes allow normal ejection fraction despite depressed myocardial shortening in hypertensive left ventricular hypertrophy.
J Am Coll Cardiol.
1995;
26
195-202
24
Palmon L C, Reichek N, Yeon S B et al.
Intramural myocardial shortening in hypertensive left ventricular hypertrophy with normal pump function.
Circulation.
1994;
89
122-131
25
Derumeaux G, Mulder P, Richard V et al.
Tissue Doppler Imaging differentiates physiological from pathological pressure-overload left ventricular hypertrophy in rats.
Circulation.
2002;
105
1602-1608
26
De Simone G, Devereux R B.
Rationale of echocardiographic assessment of left ventricular wall stress and midwall mechanics in hypertensive heart disease.
Eur J Echocardiogr.
2002;
3
192-198
27
De Simone G, Devereux R B, Koren M J et al.
Midwall left ventricular mechanics. An independent predictor of cardiovascular risk in arterial hypertension.
Circulation.
1996;
93
259-265
28
Pacileo G, Calabrò P, Limongelli G et al.
Left ventricular remodeling, mechanics, and tissue characterization in congenital aortic stenosis.
J Am Soc Echocardiogr.
2003;
16
214-220
29
Krayenbuehl H P, Hess O M, Monrad E S et al.
Left ventricular myocardial structure in aortic valve disease before, intermediate, and late after aortic valve replacement.
Circulation.
1989;
79
744-755
30
Hein S, Arnon E, Kostin S et al.
Progression From Compensated Hypertrophy to Failure in the Pressure-Overloaded Human Heart: Structural Deterioration and Compensatory Mechanisms.
Circulation.
2003;
107
984-991
31
Assayag P, Carré F, Chevalier B et al.
Compensated cardiac hypertrophy: arrhythmogenicity and the new myocardial phenotype. I. Fibrosis.
Cardiovasc Res.
1997;
34
439-444
32
Derumeaux G, Mulder P, Richard V et al.
Tissue Doppler imaging differentiates physiological from pathological pressure-overload left ventricular hypertrophy in rats.
Circulation.
2002;
105
1602-1608
33
Kiraly P, Kapusta L, Thijssen J M et al.
Left ventricular myocardial function in congenital valvar aortic stenosis assessed by ultrasound tissue-velocity and strain-rate techniques.
Ultrasound Med Biol.
2003;
29
615-620
34
Kowalski M, Herbots L, Weidemann F et al.
One-dimensional ultrasonic strain and strain rate imaging: a new approach to the quantitation of regional myocardial function in patients with aortic stenosis.
Ultrasound Med Biol.
2003;
29
1085-1092
35
Cramariuc D, Gerdts E, Davidsen E S et al.
Myocardial deformation in aortic valve stenosis: relation to left ventricular geometry.
Heart.
2010;
96
106-112
36
Delgado V, Tops L F, Bommel R J et al.
Strain analysis in patients with severe aortic stenosis and preserved left ventricular ejection fraction undergoing surgical valve replacement.
Eur Heart J.
2009;
30
3037-3047
37
Iwahashi van N, Nakatani S, Kanzaki H et al.
Acute improvement in myocardial function assessed by myocardial strain and strain rate after aortic valve replacement for aortic stenosis.
J Am Soc Echocardiogr.
2006;
19
1238-1244
38
Kosmala W, Plaksej R, Strotmann J et al.
Progression of Left Ventricular Functional Abnormalities in Hypertensive Patients with Heart Failure: An Ultrasonic Two-Dimensional Speckle Tracking Study.
J Am Soc Echocardiogr.
2008;
21
1309-1317
39
Ballo P, Quatrini I, Giacomin E et al.
Circumferential versus longitudinal systolic function in patients with hypertension: a nonlinear relation.
J Am Soc Echocardiogr.
2007;
20
298-306
40
Poulsen S H, Andersen N H, Heickendorff L et al.
Relation between plasma amino-terminal propeptide of procollagen type III and left ventricular longitudinal strain in essential hypertension.
Heart.
2005;
91
624-629
41
Bell J R, Fox A C.
Pathogenesis of subendocardial ischemia.
Am J Med Sci.
1974;
268
3-13
42
Kirk E S, Honig C R.
An experimental and theoretical analysis of myocardial tissue pressure.
Am J Physiol.
1964;
207
361
43
Simone de G, Devereux R B.
Rationale of echocardiographic assessment of left ventricular wall stress and midwall mechanics in hypertensive heart disease.
Eur J Echocardiogr.
2002;
3
192-198
44
Heng M K, Janz R F, Jobin J.
Estimation of regional stress in the left ventricular septum and free wall: an echocardiographic study suggesting a mechanism for asymmetric septal hypertrophy.
Am Heart J.
1985;
110
84-90
45
Weidemann F, Niemann M, Herrmann S et al.
A new echocardiographic approach for the detection of non-ischaemic fibrosis in hypertrophic myocardium.
Eur Heart J.
2007;
28
3020-3026
46
Siri F M, Malhotra A, Factor S M et al.
Prolonged ejection duration helps to maintain pump performance of the renal-hypertensive-diabetic rat heart: correlations between isolated papillary muscle function and ventricular performance in situ.
Cardiovasc Res.
1997;
34
230-240
47
Shirani J, Pick R, Roberts W C et al.
Morphology and significance of the left ventricular collagen network in young patients with hypertrophic cardiomyopathy and sudden cardiac death.
J Am Coll Cardiol.
2000;
35
36-44
48
Ganame J, Mertens L, Eidem B W et al.
Regional myocardial deformation in children with hypertrophic cardiomyopathy: morphological and clinical correlations.
Eur Heart J.
2007;
28
2886-2894
Dr. Karen A. Marcus
Children’s Heart Centre, Radboud University Nijmegen Medical Centre
Geert grote plein zuid 10
6500 HB Nijmegen
Netherlands
Phone: ++ 31/24/3 61 31 75
Fax: ++ 31/24/3 54 05 76
Email: k.marcus@cukz.umcn.nl