Synlett 2010(16): 2477-2481  
DOI: 10.1055/s-0030-1258058
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Efficient Syntheses of Thiophenol Derivatives

Frédéric Dumur*a,b, Valérie Roubaudc, Eddy Dumasb, Cédric R. Mayerb
a Laboratoire Chimie Provence, Faculté des Sciences et Techniques, Universités d’Aix-Marseille I, II, III-CNRS UMR 6264, Equipe CROPS, campus de Saint Jérôme, avenue Escadrille Normandie-Niemen, Case 542, 13397 Marseille Cedex 20, France
Fax: +33(4)91288758; e-Mail: frederic.dumur@univ-provence.fr;
b Institut Lavoisier de Versailles, Université de Versailles Saint Quentin en Yvelines, CNRS UMR 8180, 45 avenue des Etats Unis, 78035 Versailles Cedex, France
c Laboratoire Chimie Provence, Faculté des Sciences et Techniques, Universités d’Aix-Marseille I, II, III-CNRS UMR 6264, Equipe SREP, campus de Saint Jérôme, avenue Escadrille Normandie-Niemen, Case 521, 13397 Marseille Cedex 20, France
Further Information

Publication History

Received 16 June 2010
Publication Date:
19 August 2010 (online)

Abstract

The photochemical bromination of 4-methylthiophenol with N-bromosuccinimide is reported. Depending on the amount of NBS, mono or bis bromination of the methyl group was obtained. Conversion of brominated derivatives to dialdehydes is also discussed. Improvement of synthetic routes towards thiophenol derivatives is motivated by their key role for the functionalization of metal nanoparticles and surfaces.

    References and Notes

  • 1 Yang GF. Lu RJ. Fei XN. Yang HZ. Chin. J. Chem.  2000,  18:  435 
  • 2a Jiang W. Fu Q. Fan H. Ho J. Wang W. Angew. Chem. Int. Ed.  2007,  46:  8445 
  • 2b Rohr H. Trieflinger C. Rurack K. Daub J. Chem. Eur. J.  2006,  12:  689 
  • 2c Zhao CT. Zhang YX. Li RJ. Li XY. Jiang JZ. J. Org. Chem.  2007,  72:  2402 
  • 3a Hughes I. Harper GP. Karran EH. Markwell RE. Miles-Williams AJ. Bioorg. Med. Chem. Lett.  1995,  5:  3039 
  • 3b Pankratov A. Shalabai A. J. Struct. Chem.  2004,  45:  756 
  • 3c Dubinskii RA. Krivtsova IY. Grigor’ev NB. Degterev EV. Filimonova LD. Kalinkina MA. Pharm. Chem. J.  1994,  28:  942 
  • 3d Dong C.-Z. Ahamada-Himidi A. Plocki S. Aoun D. Touaibia M. Meddad-Bel Habich N. Huet J. Redeuilh C. Ombetta J.-E. Godfroid J.-J. Massicot F. Heymans F. Bioorg. Med. Chem.  2005,  13:  1989  
  • 4a Mayer CR. Cucchiaro G. Jullien J. Dumur F. Marrot J. Dumas E. Sécheresse F. Eur. J. Inorg. Chem.  2008,  3614 
  • 4b Krüger C. Agarwal S. Greiner A. J. Am. Chem. Soc.  2008,  130:  2710 
  • 4c Dumur F. Mayer CR. Hoang-Thi K. Ledoux-Rak I. Miomandre F. Clavier G. Dumas E. Méallet-Renault R. Frigoli M. Zyss J. Sécheresse F. Inorg. Chem.  2009,  48:  8120 
  • 5 Nikoobakht B. Jianping W. El-Sayed MA. Chem. Phys. Lett.  2002,  366:  17 
  • 6a Garg N. Carrasquillo-Molina E. Lee TR. Langmuir  2002,  18:  2717 
  • 6b Weibel N. Blazczyk A. von Hänisch C. Mayor M. Pobelov I. Wandlowski T. Chen F. Tao N. Eur. J. Org. Chem.  2008,  136 
  • 7a Moriggi L. Cannizzo C. Dumas E. Mayer CR. Ulianov A. Helm L. J. Am. Chem. Soc.  2009,  131:  10828 
  • 7b Gurbhele-Tupkar MC. Perez LR. Silva Y. Lees WJ. Bioorg. Med. Chem.  2006,  16:  2579 
  • 8a Pearson DL. Tour JM. J. Org. Chem.  1997,  62:  1376 
  • 8b

    Dumur, F.; Dumas, E.; Mayer, C. R. unpublished results.

  • 9a Joshi AV. Bhusare S. Baidossi M. Qafisheh N. Sasson Y. Tetrahedron Lett.  2005,  46:  3583 
  • 9b Kosmrlj J. Kocevar M. Polanc S. J. Chem. Soc., Perkin Trans. 1  1998,  3917 
  • 9c Shinkai S. Yamada S. Kunitake T.
    J. Polym. Sci: Polym. Lett. Ed.  1977,  16:  137 
  • 10a Ionita P. Caragheorgheopol A. Gilbert BC. Chechik V. J. Am. Chem. Soc.  2002,  124:  9048 
  • 10b Werts MHV. Zaim H. Blanchard-Desce M. Photochem. Photobiol. Sci.  2004,  3:  29 
  • 10c Ionita P. Caragheorgheopol A. Gilbert BC. Chechik V. Langmuir  2004,  20:  11536 
  • 10d Garg N. Carrasquillo-Molina E. Randall Lee T. Langmuir  2002,  18:  2717 
  • 11a Kruger C. Agarwal S. Greiner A. J. Am. Chem. Soc.  2008,  130:  2710 
  • 11b Nikoobakht B. Wang J. El-Sayed MA. Chem. Phys. Lett.  2002,  366:  17 
  • 12a Lowe JN. Fulton DA. Chiu S.-H. Elizarov AM. Cantrill SJ. Rowan SJ. Fraser Stoddart J. J. Org. Chem.  2004,  69:  4390 
  • 12b Dickman DA. Chemburkar S. Konopacki DB. Elisseou EM. Synthesis  1993,  573 
  • 12c Young RN. Gaultier JY. Coombs W. Tetrahedron Lett.  1984,  25:  1753 
  • 13 Miao Z, Liu J, Norman T, and Driver R. inventors; Int. Patent, WO  2006069246. 
  • 14 Witt D. Synthesis  2008,  2491 
  • 15 De Martino G. La Regina G. Coluccia A. Edler MC. Barbera MC. Brancale A. Wilcox E. Hamel E. Artico M. Silvestri R. J. Med. Chem.  2004,  47:  6120 
  • 16 Bagheri M. Azizi N. Saidi MR. Can. J. Chem.  2005,  83:  146 
  • 19a Jin J.-Y. Jin Z.-Z. Xia Y. Zhou Z.-Y. Wu X. Zhu D.-X. Su Z.-M. Polymer  2007,  48:  4028 
  • 19b Shao P. Li Z. Luo J. Wang H. Qin J. Synth. Commun.  2005,  35:  49 
  • 20 Li W. Li J. DeVincentis D. Mansour TS. Tetrahedron Lett.  2004,  45:  1071 
17

Procedure for the Synthesis of 1,2-Bis[4-(bromomethyl)-phenyl]disulfane (3; Table 1, Entry 4): NBS (0.8 g, 4.49 mmol) was added to a solution of 4-methylthiophenol (0.56 g, 4.49 mmol) in benzene (5 mL). The solution was deaerated with argon for 20 min during which time p-tolyl disulfide (4) formed. NBS (0.08 g, 0.449 mmol, 0.1 equiv) was added and the reaction mixture was irradiated for 1 h with a 250-W tungsten lamp, placed next to the flask, which provided sufficient energy to reflux the solvent. Two other portions of NBS (0.08 g, 0.449 mmol) were successively added followed by 1 h of irradiation after each addition. After cooling, succinimide precipitated and was removed by filtration. The filtrate was then concentrated under reduced pressure. The residue was diluted with CH2Cl2 (100 mL) and the organic phase was washed with diluted sodium thiosulfate until the brown color of bromine disappeared. The organic phase was washed twice with H2O (2 × 20 mL), dried over MgSO4 and the solvent was removed under reduced pressure. NMR spectrum of the brownish solid showed a mixture of 3 and 5 in a ratio of 92:8. Recrystallization from EtOH yielded 3 pure as a white solid (334 mg, 37% yield). ¹H NMR (400 MHz, CDCl3): δ = 4.46 (s, 4 H), 7.33 (d, 4 H, J = 8.3 Hz), 7.45 (d, 4 H, J = 8.3 Hz). ¹³C NMR (100 MHz, CDCl3): δ = 32.7, 127.5, 129.8, 136.9, 137.2. Anal. Calcd for C14H12Br2S2: C, 41.60; H, 2.99; S, 15.87. Found: C, 41.58; H, 3.10; S, 16.18.

18

Procedure for the Synthesis of 1,2-Bis[4-(dibromo-methyl)phenyl]disulfane (5; Table 2, Entry 1): NBS (0.8 g, 4.49 mmol) was added to a solution of 4-methylthiophenol (0.56 g, 4.49 mmol) in benzene (5 mL). The solution was deaerated with argon for 20 min during which time p-tolyl disulfide 4 formed. Then NBS (1.6 g, 8.98 mmol, 2 equiv) was added in one portion and the reaction mixture was irradiated for 1 h. After cooling, succinimide precipitated and was removed by filtration. The filtrate was then concentrated under reduced pressure. The residue was diluted with CH2Cl2 (100 mL) and the organic phase was washed with diluted sodium thiosulfate until the brown color of bromine disappeared. The organic phase was washed twice with H2O (2 × 20 mL), dried over MgSO4 and the solvent was removed under reduced pressure. NMR spectrum of the crude reaction mixture showed a mixture of 5:3 in the ratio 90:10. The residue was then purified by recrystallization from EtOH. Tetrabromide 5 was isolated pure as a light-brown solid (0.908 g, 72% yield). ¹H NMR (400 MHz, CDCl3): δ = 6.61 (s, 2 H), 7.47 (d, 4 H, J = 8.6 Hz), 7.52 (d, 4 H, J = 8.6 Hz). ¹³C NMR (100 MHz, CDCl3): δ = 39.9, 126.8, 127.3, 138.6, 140.8. Anal. Calcd for C14H10Br4S2: C, 29.92; H, 1.79; S, 11.41. Found: C, 30.19; H, 2.16; S, 11.61.

21

Procedure for the Synthesis of 1,2-Bis[4-(formyl)-phenyl]disulfane (2; Sommelet Reaction): aq AcOH (50%, 20 mL) was added to a mixture of 3 (0.50 g, 1.24 mmol), and hexamethylenetetramine (0.69 g, 4.8 mmol) in THF (10 mL). The mixture was refluxed overnight. The solution was then diluted with H2O (20 mL) and extracted with CH2Cl2 (2 × 20 mL). The organic phases were combined, dried over MgSO4 and the solvent was finally removed under reduced pressure. Purification by column chromatography (silica gel, CH2Cl2) afforded dialdehyde 2 as a colorless solid (0.254 g, 75% yield). NMR characterizations were consistent with the literature (see ref.¹²). ¹H NMR (400 MHz, CDCl3): δ = 7.61 (d, 4 H, J = 8.4 Hz), 7.81 (d, 4 H, J = 8.4 Hz), 9.95 (s, 2 H, CHO). ¹³C NMR (100 MHz, CDCl3): δ = 126.2, 130.3, 135.1, 143.7, 190.9.