Subscribe to RSS
DOI: 10.1055/s-0030-1258103
N-Heterocyclic Carbene Catalyzed [2+2] Cycloaddition of Aryl Isothiocyanates and Nitroolefins: An Efficient Synthesis of β-Thiolactams
Publication History
Publication Date:
30 June 2010 (online)
Abstract
The first example of a convenient N-heterocyclic carbene (NHC) catalyzed synthesis of β-thiolactams via [2+2] cycloaddition of aryl isothiocyanates and nitroolefins is reported. The protocol affords β-thiolactams in excellent yields with high diastereoselectivity in favor of the cis isomer. Operational simplicity, excellent yields of products, efficient synthesis, and no by-product formation are the salient features of this synthetic protocol. Two possible catalytic pathways, initiated by the addition of NHC to aryl isothiocyanates or nitroolefins, are discussed.
Key words
N-heterocyclic carbenes - nitroolefins - aryl isothiocyanates - β-thiolactams - stereoselective synthesis - cycloaddition reactions
-
1a
Dittmer DC. Chem. Ind. (London) 1947, 779 -
1b
Mizuno N.Misono M. Chem. Rev. 1998, 98: 199 - 2
Singh GS.D’hooghe M.De Kimpe N. In Comprehensive Heterocyclic Chemistry III Vol. 2:Stevens CV. Elsevier; Oxford: UK, 2008. Chap. 2.01. p.1 -
3a
The Organic Chemistry of β
-Lactams
George GI. VCH; Weinheim: 1993. -
3b
Kidwai M.Sapra P.Bhushan KR. Curr. Med. Chem. 1999, 6: 195 -
4a
Braun M.Galle D. Synthesis 1996, 819 -
4b
Dolle RE. J. Comb. Chem. 2001, 3: 477 -
4c
Dolle RE. J. Comb. Chem. 2002, 4: 369 -
4d
Dolle RE. J. Comb. Chem. 2003, 5: 693 -
4e
Dolle RE. J. Comb. Chem. 2004, 6: 623 -
5a
Murphy BP.Pratt RF. Biochem. J. 1988, 256: 669 -
5b
Nieschalk J.Schaumann E. Liebigs Ann. Chem. 1996, 141 -
6a
Tsang WY.Dhanda A.Schofield CJ.Page MI. J. Org. Chem. 2004, 69: 339 -
6b
Tsang WY.Dhanda A.Schofield CJ.Frere JM.Galleni M.Page MI. Bioorg. Med. Chem. Lett. 2004, 14: 1737 - 7
Murphy BP.Pratt RF. Biochem. J. 1988, 256: 669 -
8a
Creary X.Zhu C. J. Am. Chem. Soc. 1995, 117: 5859 -
8b
Creary X.Zhu C.Jiang Z. J. Am. Chem. Soc. 1996, 118: 12331 -
8c
Creary X.Losch A. Org. Lett. 2008, 10: 4975 -
9a
Förster W.-R.Isecke R.Spanka C.Schaumann E. Synthesis 1997, 942 -
9b
Méndez L.Delpiccolo CML.Mata EG. Synlett 2005, 1563 -
9c
Krasodomska M.Serda P. Monatsh. Chem. 2007, 138: 199 -
9d
Nieschalk J.Spanka C.Schaumann E. Liebigs Ann. 1996, 135 -
9e
Creary X.Burtch E.Jiang Z. J. Org. Chem. 2003, 68: 1117 -
9f
Sakamoto M.Takahashi M.Arai W.Mino T.Yamaguchi K.Watanabe S.Fujita T. Tetrahedron 2000, 56: 6795 -
10a
Adams JP.Paterson JR. J. Chem. Soc., Perkin Trans. 1 1999, 749 -
10b
Adams JP.Paterson JR. J. Chem. Soc., Perkin Trans. 1 2000, 3695 -
10c
Perekalin VV.Lipina ES.Berestovitskaya VM.Efremov DA. Nitroalkenes, Conjugated Nitro Compounds Wiley & Sons; Chichester / UK: 1994. -
10d
Olah GA.Malhotra R.Narang SC. Nitration: Methods and Mechanisms VCH; New York: 1989. -
10e
Ono N. The Nitro Group in Organic Synthesis Wiley-VCH; New York: 2001. -
11a
Chandrasekhar S.Tiwari B.Parida BB.Reddy CR. Tetrahedron: Asymmetry 2008, 19: 495 -
11b
Li H.Wang J.Zu L.Wang W. Tetrahedron Lett. 2006, 47: 2585 -
12a
Muhkerjee AK.Ashare R. Chem. Rev. 1991, 91: 1 -
12b
Stephensen H.Zaeagosa F. J. Org. Chem. 1997, 62: 6096 -
13a
Marion N.Diez-González S.Nolan SP. Angew. Chem. Int. Ed. 2007, 46: 2988 -
13b
Zeitler K. Angew. Chem. Int. Ed. 2005, 44: 7506 -
13c
N-Heterocyclic Carbenes in Transition Metal
Catalysis, In Topics in Organometallic Chemistry
Vol.
28:
Glorius F. Springer-Verlag; Berlin/Heidelberg: 2007. -
13d
Enders D.Niemeier O.Henseler A. Chem. Rev. 2007, 107: 5606 -
13e
Huang X.-L.Chen X.-Y.Ye S. J. Org. Chem. 2009, 74: 7585 -
13f
Zhang Y.-R.He L.Wu X.Shao P.-L.Ye S. Org. Lett. 2008, 10: 277 -
13g
Wang X.-N.Shao P.-L.Lv H.Ye S. Org. Lett. 2009, 11: 4029 -
13h
Lin H.Lv H.Zhang Y.-R.Ye S. J. Org. Chem. 2008, 73: 8101 - 14
Enders D.Niemeier O.Balensiefer T. Angew. Chem. Int. Ed. 2006, 45: 1463 - 15
Liu Q.Rovis T. J. Am. Chem. Soc. 2006, 128: 2552 - 16
Maki BE.Chan A.Phillips EM.Scheidt KA. Org. Lett. 2007, 9: 371 -
17a
Glorius F.Burstein C. Angew. Chem. Int. Ed. 2004, 43: 6205 -
17b
Sohn SS.Rosen EL.Bode JW. J. Am. Chem. Soc. 2004, 126: 14370 -
17c
Chiang P.-C.Kaeobamrung J.Bode JW. J. Am. Chem. Soc. 2007, 129: 3520 -
17d
Nair V.Vellalath S.Babu BP. Chem. Soc. Rev. 2008, 37: 2691 - 18
Sohn SS.Bode JW. Angew. Chem. Int. Ed. 2006, 45: 6021 - 19
Fukuda Y.Maeda Y.Kondo K.Aoyama T. Chem. Pharm. Bull. 2006, 54: 397 -
20a
Yadav LDS.Singh S.Rai VK. Synlett 2010, 240 -
20b
Yadav LDS.Rai VK.Singh S.Singh P. Tetrahedron Lett. 2010, 51: 1657 -
20c
Yadav LDS.Kapoor R. . Synlett 2009, 1055 -
20d
Yadav LDS.Kapoor R. . Synlett 2009, 3123 -
20e
Yadav LDS. .Kapoor R. Tetrahedron Lett. 2009, 50: 5420 -
20f
Yadav LDS.Srivastava VP.Patel R. Tetrahedron Lett. 2008, 49: 5652 - 22
Cossio FP.Arrieta A.Sierra MA. Acc. Chem. Res. 2008, 41: 925
References and Notes
General Procedure
for the Synthesis of 3-Nitro-1,4-diarylazetidine-2-thiones 4: A
flame-dried round-bottom flask was charged with benzimidazolium
salt 3a (0.20 mmol), β-nitroolefin 1 (1.0 mmol), aryl isothiocyanate 2 (1.0 mmol) and THF-t-BuOH (10:1, 5 mL) under positive pressure
of nitrogen followed by addition of DBU (0.20 mmol) by using a syringe.
The resulting solution was stirred for 6-8 h at room temperature
(Table
[²]
). After
completion of the reaction (monitored by TLC), the reaction mixture
was concentrated under reduced pressure. The residue was purified
by column chromatography on silica gel (hexane-EtOAc, 9:1)
to afford analytically pure
cis-4.
Characterization Data of Representative Compounds
cis
-4: Compound cis-4a: Yield:
86%; yellow solid; mp 135-137 ˚C.
IR (KBr): 1621, 1605, 1556, 1460, 1232 cm-¹. ¹H NMR
(400 MHz, CDCl3/TMS): δ = 4.43
(d, J = 5.6 Hz,
1 H, 4-H), 4.82 (d, J = 5.6 Hz,
1 H, 3-H), 6.78-7.31 (m, 10 H, ArH). ¹³C
NMR (100 MHz, CDCl3/TMS): δ = 61.1,
107.3, 121.6, 123.2, 126.8, 127.3, 128.3, 129.1, 138.5, 141.4, 199.9.
MS (EI): m/z = 284 [M]+.
Anal. Calcd for C15H12N2O2S:
C, 63.42; H, 4.25; N, 9.86. Found: C, 63.71; H, 4.56; N, 9.72. Compound cis-4d: Yield:
87%; yellow solid; mp 146-148 ˚C.
IR (KBr): 1619, 1600, 1565, 1465, 1240 cm-¹. ¹H
NMR (400 MHz, CDCl3/TMS): δ = 4.61
(d, J = 5.7 Hz,
1 H, 4-H), 5.10 (d, J = 5.7 Hz,
1 H, 3-H), 6.84-7.31 (m, 5 H, ArH), 7.86
(d, J = 8.4 Hz,
2 H, ArH), 8.33 (d, J = 8.4 Hz,
2 H, ArH). ¹³C NMR (100 MHz,
CDCl3/TMS):
δ = 62.4,
105.7, 122.7, 123.8, 126.9, 127.5, 128.8, 140.8, 145.3, 147.6, 198.1.
MS (EI): m/z = 329 [M]+.
Anal. Calcd for C15H11N3O4S:
C, 54.75; H, 3.37; N, 12.77. Found: C, 54.57; H, 3.66; N, 12.41.
Compound cis-4h:
Yield: 84%; yellow solid; mp 125-127 ˚C.
IR (KBr): 1623, 1603, 1560, 1456, 1243 cm-¹. ¹H
NMR (400 MHz, CDCl3/TMS): δ = 4.50
(d, J = 5.4 Hz,
1 H, 4-H), 4.90 (d, J = 5.4 Hz,
1 H, 3-H), 6.79-7.68 (m, 12 H, ArH). ¹³C
NMR (100 MHz, CDCl3/TMS): δ = 60.8,
106.4, 110.4, 118.2, 120.3, 121.5, 122.8, 124.2, 125.6, 126.7, 127.1,
127.5, 128.0, 136.1, 140.4, 143.4, 199.5. MS (EI): m/z = 334 [M]+.
Anal. Calcd for C19H14N2O2S:
C, 68.30; H, 4.22; N, 8.39. Found: C, 68.66; H, 4.42; N, 8.09. Compound cis-4k: Yield:
86%; yellow solid; mp 147-149 ˚C.
IR (KBr): 1628, 1610, 1568, 1462, 1238 cm-¹. ¹H
NMR (400 MHz, CDCl3/TMS): δ = 4.61
(d, J = 5.6 Hz,
1 H, 4-H), 5.18 (d, J = 5.6 Hz,
2 H, 3-H), 6.97-7.54 (m, 7 H, ArH), 7.82
(d, J = 8.5 Hz,
2 H, ArH), 8.10 (d, J = 8.5 Hz,
1 H, ArH). ¹³C NMR (100 MHz,
CDCl3/TMS):
δ = 61.9,
105.3, 112.1, 118.4, 120.6, 121.7, 122.5, 124.6, 125.7, 126.7, 127.4,
127.8, 136.4, 140.8, 143.7, 144.1, 200.1. MS (EI): m/z = 379 [M]+.
Anal. Calcd for C19H13N3O4S:
C, 60.20; H, 3.45; N, 11.09. Found: C, 60.35; H, 3.75; N, 10.77.