Synlett 2010(12): 1803-1806  
DOI: 10.1055/s-0030-1258104
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

A New Effective Synthesis of Arene Mono- and Disulfonyl Chlorides

Margherita Barbero*, Stefano Bazzi, Silvano Cadamuro, Stefano Dughera, Claudio Magistris, Paolo Venturello
Dipartimento di Chimica Generale e Chimica Organica dell’Università, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy
Fax: +39(011)6707642; e-Mail: margherita.barbero@unito.it;
Further Information

Publication History

Received 23 April 2010
Publication Date:
30 June 2010 (online)

Abstract

Arene mono- and disulfonyl chlorides have been easily synthesized starting from the corresponding anilines via aqueous oxidative chlorination of S-aryl O-ethyl dithiocarbonates intermediates, aryl methyl sulfides, or from arenethiols.

    References and Notes

  • 1 Barbero M. Bazzi S. Cadamuro S. Dughera S. Piccinini C. Synthesis  2010,  315 ; and references cited therein
  • 2a Hollemann AF. Recl. Trav. Chim. Pays-Bas  1921,  40:  446 
  • 2b Hurtley WR. Smiles S. J. Chem. Soc.  1926,  1821 
  • 2c Hendrickson JB. Okano S. Bloom RK. J. Org. Chem.  1969,  34:  3434 
  • 2d Blaschette A. Jones PG. Hamann T. Näveke M. Z. Anorg. Allg. Chem.  1993,  619:  912 
  • 2e Davis FA. Sundarababu G. Qi H. Org. Prep. Proced. Int.  1998,  30:  107 
  • 2f Barbero M. Degani I. Fochi R. Regondi V. Gazz. Chim. Ital.  1986,  116:  165 
  • 2g Sørbye K. Tautermann C. Carlsen P. Fiksdahl A. Tetrahedron: Asymmetry  1998,  9:  681 
  • 2h Karino H, Goda H, Sakamoto J.-I, Yoshida K, and Nishiguchi H. inventors;  WO96/33167.  ; Chem. Abstr. 1997, 126, 18657
  • 3a Garcia-Garcia P. Lay F. Garcia-Garcia P. Rabalakos C. List B. Angew. Chem. Int. Ed.  2009,  48:  4363 
  • 3b Treskow M. Neudörfl J. Giernoth R. Eur. J. Org. Chem.  2009,  3693 
  • 4a Hoyle J. In The Chemistry of Sulphonic Acids, Esters and their Derivatives   Patai S. Rappoport Z. Wiley; New York: 1991.  p.379-386  
  • 4b Nishiguchi A. Maeda K. Miki S. Synthesis  2006,  4131 
  • 5a Barbero M, Cadamuro S, Degani I, Fochi R, and Regondi V. inventors; EP  234249.  ; Chem. Abstr. 1988, 108, 23697
  • 5b Barbero M. Cadamuro S. Degani I. Fochi R. Regondi V. Synthesis  1989,  957 
  • 5c Barbero M, Cadamuro S, Degani I, and Fochi R. inventors; IT  0001245596. 
  • 6 Romagnoli R. Baraldi PG. Carrion MD. Cara CL. Preti D. Fruttarolo F. Pavani MG. Tabrizi MA. Tolomeo M. Grimaudo S. Di Cristina A. Balzarini J. Hadfield JA. Brancale A. Hamel E. J. Med. Chem.  2007,  50:  2273 
  • 7 Damschroder RE. Peterson WD. Org. Synth., Coll. Vol. III  1955,  106 
  • 8a Leuckart R. J. Prakt. Chem.  1890,  41:  179 
  • For reviews, see:
  • 8b Baguley PA. Walton JC. Angew. Chem. Int. Ed.  1998,  37:  3072 
  • 8c Studer A. Synthesis  2003,  835 
  • 9a Barbero M, Degani I, Fochi R, and Perracino P. inventors; WO  98/39312.  ; Chem. Abstr. 1998, 129, 244942
  • 9b Barbero M. Crisma M. Degani I. Fochi R. Perracino P. Synthesis  1998,  1171 
  • 10a Wang C. Hamilton C. Meister P. Menning C. Org. Process Res. Dev.  2007,  11:  52 
  • 10b Percec V. Bera TK. De B B. Sanai Y. Smith J. Holerca MN. Barboiu B. J. Org. Chem.  2001,  66:  2104 
  • 11 Barbero M. Degani I. Dughera S. Fochi R. Perracino P. Synthesis  1999,  90 
  • 12 Farrar WV. J. Chem. Soc.  1960,  3063 
  • 13 Limpricht H. Liebigs Ann. Chem.  1891,  261:  310 
  • 14 Barber HJ. Smiles S. J. Chem. Soc.  1928,  1141 
  • 15a Armarego WLF. Turner EE. J. Chem. Soc.  1956,  1665 
  • 15b Armarego WLF. Turner EE. J. Chem. Soc.  1957,  13 
  • 16 Aikawa K. Mikami K. Chem. Commun.  2005,  5799 
  • 17 Robinson MK. Kochurina VS. Hanna JM. Tetrahedron Lett.  2007,  48:  7687 
  • 18 Darses S. Jeffery T. Genet J.-P. Tetrahedron Lett.  1996,  37:  3857 
  • 19 Barbero M. Degani I. Dughera S. Fochi R. J. Org. Chem.  1999,  64:  3448 
  • 20 Bhar D. Chandrasekaran S. Synthesis  1994,  785 
  • 21 Fabbri D. Delogu G. De Lucchi O. J. Org. Chem.  1993,  58:  1748 
  • 23 Chau MM. Kice JL. J. Org. Chem.  1977,  42:  3265 
22

Diazotization of Amines 2 - General Procedure To a stirred solution of amines 2 (1.0 mmol) and HBF4 (54% in Et2O. 1.2 mmol. 1.90 g) in HCOOH (15 mL), at 5-10 ˚C, 3-methylbutyl nitrite (1.29 g, 1.1 mmol) was slowly added at such a rate that the temperature did not exceed 10 ˚C. Then the reaction mixture was stirred for 10 min in an ice bath, and at r.t. for 5 min. Finally, after cooling at 0-5 ˚C, anhyd Et2O was added to precipitate salts 3, gathered by filtration on a Büchner funnel, and washed several times with Et2O. After drying under vacuum, pure salts 3 were obtained and immediately reacted (physical and ¹H NMR and ¹³C NMR spectral data identical to literature).
Conversion of Crude Salts 3 to O -Ethyl S -Aryl Dithiocarbonates 4 and Oxidative Chlorination of Crudes 4 to Arenesulfonyl Chlorides 5 - General Procedures Crude salts 3 (1.0 mmol) were carefully added under stirring to a solution of potassium O-ethyl dithiocarbonate (1.0 mmol, 1.60 g) and Na2CO3 (1.0 mmol, 1.06 g) in H2O (40 mL), heated to 35-40 ˚C. Then the reaction mixture was stirred at 60 ˚C for 20 min. After cooling to r.t., the resultant mixture was poured into Et2O-H2O (40 mL, 2:1). The aqueous layer was separated and extracted with Et2O (2 × 20 mL). The combined organic extracts were washed with H2O (20 mL), dried over Na2SO4, and evaporated. The crude residues were directly reacted to give arenesulfonyl chlorides 5. A small stream of Cl2 was bubbled through a well-stirred ice-cooled emulsion of crudes 4 in H2O (20 mL) or HCOOH-H2O (40 mL, 9:1; for crude 4f), at such a rate that the temperature did not rise to 10 ˚C. The reaction was stopped when Cl2 was no longer absorbed and TLC analysis (PE-Et2O, 8:2) showed the presence of only one persistent spot. After removing chlorine excess, the reaction mixture was extracted with CH2Cl2 (3 × 20 mL); organic extracts were neutralized with 10% aq NaHCO3, dried, and evaporated under reduced pressure. Crude residues chromatographed on a short column (PE-Et2O, 9:1) provided pure arenesulfonylchlorides 5 (comparison with literature data or commercially pure samples).
Benzene-1,2-disulfonyl Chloride (5f) ²g After completion of oxidative chlorination (TLC analysis and appearance of a fine dispersed white solid), chlorine excess was removed under vacuum; crude virtually pure 5f was filtered on a Büchner funnel and washed with cold H2O. Mp 143-144 ˚C (CCl4; lit. 143-144 ˚C).²f ¹H NMR (200 MHz, CDCl3): δ = 8.04-8.11 (m, 2 H), 8.45-8.53 (m, 2 H). ¹³C NMR (50 MHz, CDCl3): δ = 132.6 (2 C), 136.4 (2 C), 141.4 (2 C). MS (EI): m/z (%) = 274 (20) [M+].
Biphenyl-2,2′-disulfonyl Chloride (7) Mp 143-144 ˚C (CHCl3-PE; lit. 144-145 ˚C).²³ Prepared by suspending crude 17 in CH2Cl2/H2O (10 mL, 10:1) and reacting with excess chlorine at 0-10 ˚C for 30 min; then HCOOH (10 mL) was added, and chlorination was continued until only two persisting spots were present on TLC analysis. By column chromatography (CH2Cl2-MeOH, 99:1), disulfonyl chloride 7 was eluted as first product (R f = 0.8); the second eluted product was 13 (R f = 0.3); mp 143-144 ˚C (CHCl3-PE; lit.²³ 144-145 ˚C). ¹H NMR (200 MHz, CDCl3): δ = 7.49 (dd,, J = 1.8, 7.2 Hz, 1 H), 7.67 (td, J = 1.8, 7.6 Hz, 1 H), 7.75 (td, J = 1.6, 7.6 Hz, 1 H), 8.20 (dd, J = 1.6, 8.0 Hz, 1 H). ¹³C NMR (50 MHz, CDCl3): δ = 129.0 (2 C), 129.8 (2 C),132.0 (2 C), 134.3 (2 C), 135.7 (2 C), 142.6
(2 C).
( R )-Binaphthyl-2,2′-disulfonyl Chloride (8)
Colorless needles; mp 241.2-242.2 ˚C (CHCl3-PE; lit. 244.3 ˚C).³b ¹H NMR (200 MHz, CDCl3): δ = 7.09 (d, J = 8.6 Hz, 2 H), 7.38 (ddd, J = 1.4, 7.0, 8.6 Hz, 2 H), 7.65 (ddd, J = 1.2, 7.0, 8.2 Hz, 2 H), 8.00 (d, J = 8.4 Hz), 8.20 (d, J = 9.0 Hz, 2 H), 8.27 (d, J = 9.0 Hz, 2 H). ¹³C NMR (50 MHz, CDCl3): δ = 123.2 (2 C), 127.9 (2 C), 128.4 (2 C), 128.5 (2 C), 130.1 (2 C), 131.0 (2 C), 131.8 (2 C), 133.6
(2 C), 135.3 (2 C), 140.7 (2 C).