Abstract
A triphasic phase-vanishing (PV) system comprised of an alkane,
perfluorohexanes, and bromine was successfully combined by photoirradiation
to efficiently generate hydrogen bromide, which underwent radical
addition with 1-alkenes in the hydrocarbon layer to afford terminal
bromides in high yields.
Key words
fluorous solvent - phase-vanishing - photoirradiation - bromination - hydrogen bromide
References and Notes
1 For a general review on fluorous
chemistry, see:
Handbook of Fluorous
Chemistry
Gladysz JA.
Curran DP.
Horváth IT.
Wiley-VCH;
Weinheim:
2004.
For reviews on fluorous solvents,
see:
2a
Ryu I.
Matsubara H.
Emnet C.
Gladysz JA.
Takeuchi S.
Nakamura Y.
Curran DP. In Green Reaction Media in Organic Synthesis
Mikami K.
Blackwell Publishing;
Oxford:
2005.
p.59
2b
Matsubara H.
Ryu I. In Green Separation
Processes: Fundamentals and Applications
Afonso CAM.
Crespo JG.
Wiley-VCH;
Weinheim:
2005.
p.219
3
Matsubara H.
Yasuda S.
Sugiyama H.
Ryu I.
Fujii Y.
Kita K.
Tetrahedron
2002,
58:
4071
4
Matsubara H.
Maeda L.
Ryu I.
Chem.
Lett.
2005,
34:
1548
5
Matsubara H.
Maeda L.
Sugiyama H.
Ryu I.
Synthesis
2007,
2901
For reviews on the ‘Phase-Vanishing’ method,
see:
6a
Ryu I.
Matsubara H.
Nakamura H.
Curran DP.
Chem. Rec.
2008,
8:
351
6b
Iskra J.
Lett.
Org. Chem.
2006,
3:
170
7
Ryu I.
Matsubara H.
Yasuda S.
Nakamura H.
Curran DP.
J.
Am. Chem. Soc.
2002,
124:
12946
8a
Nakamura H.
Usui T.
Kuroda H.
Ryu I.
Matsubara H.
Yasuda S.
Curran DP.
Org. Lett.
2003,
5:
1167
8b
Matsubara H.
Yasuda S.
Ryu I.
Synlett
2003,
247
8c
Rahman MT.
Kamata N.
Matsubara H.
Ryu I.
Synlett
2005,
2664
8d
Matsubara H.
Tsukida M.
Yasuda S.
Ryu I.
J. Fluorine Chem.
2008,
129:
951
9a
Jana NK.
Verkade JG.
Org. Lett.
2003,
5:
3787
9b
Iskra J.
Stavber S.
Zupan M.
Chem.
Commun.
2003,
2496
9c
Curran DP.
Werner S.
Org. Lett.
2004,
6:
1021
9d
Podgoršek A.
Stavber S.
Zupan M.
Iskra J.
Eur. J. Org.
Chem.
2006,
483
9e
Windmon N.
Dragojlovic V.
Tetrahedron Lett.
2008,
49:
6543
9f
Windmon N.
Dragojlovic V.
Beilstein J. Org. Chem.
2008,
4:
29
9g
Ma K.
Li S.
Weiss RG.
Org.
Lett.
2008,
10:
4155
9h
van Zee NJ.
Dragojlovic V.
Org.
Lett.
2009,
11:
3190
9i
Pels K.
Dragojlovic V.
Beilstein J. Org. Chem.
2009,
5:
75
10
¹ H NMR of the
concentrated reaction mixture in entry 6 of Table 1 shows peaks
assigned to 2-bromo-2,4,4-trimethyl-pentane as the product, suggesting
that hydrogen abstraction from isooctane would occur selectively
at the tertiary position of isooctane.
11a
Brown HC.
Lane CF.
J.
Am. Chem. Soc.
1970,
92:
7212
11b
Brown HC.
Lane CF.
Tetrahedron
1988,
44:
2763
11c
Falorni M.
Lardicci L.
Giacomelli G.
J.
Org. Chem.
1986,
51:
5291
11d
Brown HC.
Lane CF.
J.
Am. Chem. Soc.
1970,
92:
6660
11e
Brown HC.
Lane CF.
J.
Chem. Soc. D: Chem. Commun.
1971,
521
11f
Lane
CF.
Brown HC.
J.
Organomet. Chem.
1971,
26:
C51
11g
Tufariello JJ.
Hovey MM.
J.
Chem. Soc. D: Chem. Commun.
1970,
372
11h
Kabalka GW.
Sastry KAR.
Hsu HC.
Hylarides MD.
J. Org. Chem.
1981,
46:
3113
11i
Maruoka K.
Sano H.
Shinoda K.
Nakai S.
Yamamoto H.
J. Am.
Chem. Soc.
1986,
108:
6036
11j
Tufariello JJ.
Hovey MM.
J.
Am. Chem. Soc.
1970,
92:
3221
12a
Tamao K.
Yoshida J.
Takahashi M.
Yamamoto H.
Kakui T.
Matsumoto H.
Kurita A.
Kumada M.
J.
Am. Chem. Soc.
1978,
100:
290
12b
Tamao K.
Yoshida J.
Yamamoto H.
Kakui T.
Matsumoto H.
Takahashi M.
Kurita A.
Murata M.
Kumada M.
Organometallics
1982,
1:
355
13a
Hart DW.
Schwartz J.
J.
Am. Chem. Soc.
1974,
96:
8115
13b
Tolstikov GA.
Miftakhov MS.
Valeev FA.
Izv. Akad. Nauk SSSR, Ser. Khim.
1979,
2576
14a
Isagaga K.
Tatsumi K.
Otsuji Y.
Chem. Lett.
1977,
1117
14b
Sato F.
Sato S.
Kodama H.
Sato M.
J. Organomet. Chem.
1977,
142:
71
14c
Lee H.-S.
Kim
C.-E.
J. Korean Chem. Soc.
2003,
47:
297
14d
Lee H.-S.
Lee G.-Y.
J. Korean Chem. Soc.
2005,
49:
321
14e
Gavrilenko VV.
Kolesov VS.
Zakharkin LI.
Izv. Akad. Nauk SSSR, Ser. Khim.
1985,
681
15 The reaction without fluorous phase
gave an inferior result. For example, irradiation of a mixture of
bromine (1.16 mmol) and isooctane (6 mL) with a 500 W Xe lamp for
30 min, followed by addition of 1-dodecene (1 mmol) at r.t., gave
1-bromododecane in 79% yield together with unreacted 1-dodecene
(11%). In this procedure, probably some HBr generated would
outgas during the reaction.
16 For an example of the use of HBr
to prepare key substrates for sequential radical reactions, see: Zhang W.
Hua Y.
Geib SJ.
Hoge G.
Dowd P.
Tetrahedron
1994,
50:
12579
17
Typical Procedure
for Photoirradiative Phase
-
Vanishing Hydrogen Bromide Addition to Alkenes (Table
2, entry 2): FC-72 (6 mL) was placed in a Pyrex test tube (13 mm Æ × 105
mm) to which bromine (2.1 mmol, 340 mg) was added slowly using a
glass pipette. Isooctane (1.5 mL) solution of 1-dodecene (2.0 mmol,
340 mg) was then added slowly, forming three layers. The test tube
was irradiated with a 500 W Xenon lamp for 2 h. The isooctane layer
was taken up with a pipette. Then, additional hexane (4 × 4
mL) was placed on the residual FC-72 layer, followed by decanting
off. The combined organic layer was washed with aq 10% Na2 S2 O3 (30
mL) and sat. brine (30 mL), dried over Na2 SO4 ,
and concentrated. Purification by a short column chromatography
on silica gel with hexane gave 1-bromo-dodecane (480 mg, 96%).