Abstract
Inductively heated copper wire inside a flow microreactor can
serve as a source for a catalytic copper species that promotes 1,3-dipolar
cycloadditions of alkynes with in situ formed azides to yield 1,2,3-triazoles.
The same setup was used to carry out decarboxylations of 2-alkynoic
acids and for the intramolecular C-O coupling of 2′-bromobiphenyl-2-carboxylic
acid.
Key words
click chemistry - copper - heterogeneous catalysis - microreactors - inductive heating
References and Notes
1
Kirschning A.
Solodenko W.
Mennecke K.
Chem.
Eur. J.
2006,
12:
5972
2a
Larhed M.
Hallberg A.
Drug
Discovery Today
2001,
6:
406
2b
Bogdal D.
Loupy A.
Org. Process Res. Dev.
2008,
12:
710
2c
Kappe CO.
Chem. Soc. Rev.
2008,
37:
1127
3a
Welton T.
Chem. Rev.
1999,
99:
2071
3b
Wasserscheidt P.
Keim W.
Angew. Chem. Int. Ed.
2000,
39:
3772
3c
Sheldon R.
Chem.
Commun.
2001,
2399
3d
Dupont J.
de Souza RF.
Suarez PAZ.
Chem. Rev.
2002,
102:
3667
3e
Parvulescu VI.
Hardacre C.
Chem. Rev.
2007,
107:
2615
3f
Tzschucke CC.
Markert C.
Bannwarth W.
Angew. Chem. Int. Ed.
2002,
41:
3964
3g
Ionic
Liquids
Wasserscheidt P.
Welton T.
Wiley-VCH;
Weinheim:
2008.
Selected reviews on flowthrough
systems in organic synthesis:
4a
Jas G.
Kirschning A.
Chem. Eur. J.
2003,
9:
5708
4b
Kirschning A.
Jas G. In Immobilized Catalysts, Topics
in Current Chemistry
Vol. 242:
Kirschning A.
Springer;
Berlin/Heidelberg:
2004.
p.209-239
4c
Baxendale IR.
Ley SV. In
New Avenues to Efficient Chemical Synthesis:
Emerging Technologies
Seeberger PH.
Blume T.
Springer;
Berlin/Heidelberg:
2007.
p.151-185
4d
Baxendale IR.
Hayward JJ.
Lanners S.
Ley SV.
Smith CD. In Microreactors
in Organic Synthesis and Catalysis
Wirth T.
Wiley-VCH;
Weinheim:
2008.
Chap.
4.2.
p.84-122
4e
Ahmed-Omed B.
Brandt JC.
Wirth T.
Org.
Biomol. Chem.
2007,
5:
733
4f
Mak XY.
Laurino P.
Seeberger PH.
Beilstein
J. Org. Chem.
2009,
19
4g
Wiles C.
Watts P.
Eur. J. Org. Chem.
2008,
10:
1655
4h
Ley SV.
Baxendale IR.
CHIMIA
2008,
62:
162
4i
Ahmed-Omer B.
Brandt JC.
Wirth T.
Org. Biomol.
Chem.
2007,
5:
733
4j
Ceylan S.
Kirschning A. In Recoverable
and Recyclable Catalysts
Benaglia M.
John
Wiley and Sons;
Chichester:
2009.
Chap.
13.
p.379-411
4k
Yoshida J.
Nagaki A.
Yamada T.
Chem.
Eur. J.
2008,
14:
7450
4l
Fukuyama T.
Rahman MT.
Sato M.
Ryu I.
Synlett
2008,
151
4m
Mason BP.
Price KE.
Steinbacher JL.
Bogdan AR.
McQuade DT.
Chem. Rev.
2007,
107:
2300
Reviews on immobilised catalysts:
5a In Immobilized Catalysts,
Topics in Current Chmistry
Vol. 242:
Kirschning A.
Springer;
Berlin/Heidelberg:
2004.
5b
Solodenko W.
Frenzel T.
Kirschning A. In Polymeric Materials in Organic Synthesis and
Catalysis
Buchmeiser MR.
Wiley-VCH;
Weinheim:
2003.
5c
McNamara CA.
Dixon MJ.
Bradley M.
Chem. Rev.
2002,
102:
3275
5d
McMorn P.
Hutchings GJ.
Chem. Soc. Rev.
2004,
33:
108
6a
Kunz U.
Kirschning A.
Altwicker C.
Solodenko W.
J.
Chromatogr., A
2003,
1006:
241
6b
Kunz U.
Schönfeld H.
Solodenko W.
Jas G.
Kirschning A.
Ind. Eng.
Chem. Res.
2005,
44:
8458
6c
Kunz U.
Kirschning A.
Wen H.-L.
Solodenko W.
Cecillia R.
Kappe CO.
Turek T.
Catal.
Today
2005,
105:
318
7a
Kirschning A.
Altwicker C.
Dräger G.
Harders J.
Hoffmann N.
Hoffmann U.
Schönfeld H.
Solodenko W.
Kunz U.
Angew. Chem. Int. Ed.
2001,
40:
3995
7b
Solodenko W.
Kunz U.
Kirschning A.
Bioorg.
Med. Chem. Lett.
2002,
12:
1833
8a
Kunz U.
Leue S.
Stuhlmann F.
Sourkouni-Argirusi G.
Wen H.
Jas G.
Kirschning A.
Eur. J. Org. Chem.
2004,
3601
8b
Kirschning A.
Mennecke K.
Kunz U.
Michrowska A.
Grela K.
J.
Am. Chem. Soc.
2006,
128:
13261
8c
Solodenko W.
Jas G.
Kunz U.
Kirschning A.
Synthesis
2007,
583
8d
Dräger G.
Kiss C.
Kunz U.
Kirschning A.
Org. Biomol. Chem.
2007,
5:
3657
8e
Kirschning A.
Mennecke K.
Solodenko W.
Synthesis
2008,
1589
8f
Mennecke K.
Kirschning A.
Synthesis
2008,
3267
9
Mennecke K.
Cecilia R.
Glasnov TN.
Gruhl S.
Vogt C.
Feldhoff A.
Larrubia Vargas MA.
Kappe CO.
Kunz U.
Kirschning A.
Adv. Synth. Catal.
2008,
350:
717
10a
Ceylan S.
Friese C.
Lammel Ch.
Mazac K.
Kirschning A.
Angew. Chem. Int. Ed.
2008,
47:
8950 ; Angew. Chem .
2008, 120 , 9083
10b
Wegner J.
Ceylan S.
Friese C.
Kirschning A.
Eur. J. Org. Chem.
2010, in
press
11a
Lu A.-H.
Salabas EL.
Schüth F.
Angew. Chem. Int. Ed.
2007,
46:
1222 ; Angew. Chem . 2007 ,
119 , 1242
11b
Jun Y.-W.
Choi J.-S.
Cheon J.
Chem.
Commun.
2007,
1203
11c
Zhang XK.
Li YF.
XiaoJ Q.
Wetzel ED.
J.
Appl. Phys.
2003,
93:
7124
12
Hiergeist R.
Andrä W.
Buske N.
Hergt R.
Hilger I.
Richter U.
Kaiser WJ.
J.
Magn. Magn. Mater.
1999,
201:
420
13
Ley SV.
Thomas AW.
Angew. Chem. Int.
Ed.
2003,
24:
5400
14
Tornøe CW.
Christensen C.
Meldal M.
J. Org. Chem.
2002,
67:
3057
15a
Kolb HC.
Finn MG.
Sharpless KB.
Angew. Chem. Int.
Ed.
2001,
40:
2004
15b
Rostovtsev VV.
Green LG.
Fokin VV.
Sharpless KB.
Angew.
Chem. Int. Ed.
2002,
41:
2596
16
Smith CD.
Baxendale IR.
Lanners S.
Hayward JJ.
Smith SC.
Ley SV.
Org.
Biomol. Chem.
2007,
5:
1559
17
Bogdan AR.
Sach NW.
Adv. Synth. Catal.
2009,
351:
849
18 Quadrapure TU is commercially available
from Sigma-Aldrich.
19 Hazard warning: Aliphatic azides are
regarded to be potentially explosive. Not for all azides that can
occur as byproducts in the ‘click’ chemistry reactions
data are available in the literature. We never encountered any hazards during
these studies. However, this observation does not exclude the possibility
of explosions.
20
Typical Procedure
for Triazole Syntheses
A glass reactor (12 cm length
and 8.5 mm internal diameter) was filled with copper wire (ca. 24
g) and incased with the inductor. The reactor (void volume: 2 mL)
was connected to the pump and at the outlet side to a scavenger
cartridge which was filled with QuadrapureTM TU. The
collection vial was placed behind the scavenger cartridge. The system
was flushed with a DMF-H2 O mixture (5:1), and
the temperature was adjusted to 100 ˚C. After
the flow (flow rate 0.2 mL/min) and temperature values
reached a steady state a solution of bromide 4 (0.25
M), phenylacetylene (1 , 0.125), and sodium
azide (0.25 M, higher concentrations led to blockage of the system
due to precipitation) in DMF-H2 O was pumped
through the system (residence time approx. 10 min). After collection
of the crude product, the mixture was diluted with H2 O,
extracted with EtOAc, and dried (MgSO4 ). After evaporation
of the solvent the crude product was purified by flash chromatography
on silica gel to yield compound 5 in quantitative
yield as a slightly yellow solid.
21
Kolarovic A.
Faberova Z.
J. Org. Chem.
2009,
74:
7199
22
Trost BM.
Weiss AH.
Org. Lett.
2006,
8:
4461
23a
Ley SV.
Thomas AW.
Angew.
Chem. Int. Ed.
2003,
42:
5400
23b
Wolter M.
Nordmann G.
Buchwald SL.
Org.
Lett.
2002,
4:
973
23c
Liebeskind SL.
Srogl J.
Org. Lett.
2002,
4:
979
24
Thasana N.
Worayuthakarn R.
Kradanrat P.
John E.
Young L.
Ruchirawat S.
J. Org. Chem.
2007,
72:
9379
25
Typical Procedure
for the Catalytic Decarboxylation
A glass reactor
(12 cm length and 8.5 mm internal diameter) was filled with copper
wire (ca. 24 g) and incased with the inductor. The reactor (void
volume: 2 mL) was connected to the pump and at the outlet side to
a scavenger cartridge which was filled with QuadrapureTM TU.
The collection vial was placed behind the scavenger cartridge. The
system was flushed with MeCN, and the temperature was adjusted to 60 ˚C.
After the flow (flow rate 0.1 mL/min) and temperature values
reached a steady state a solution of 2-alkynoic acid 13 (0.1
M) in MeCN was pumped through the system (residence time approx.
20 min). After collection of the crude product, the solvent was
evaporated in vacuo, and the crude material was purified by flash
chromatography on silica gel to yield compound 14 in
93% yield as a yellow oil.
26
Synthesis of Benozopyranone
18
A PEEK reactor (12 cm length and 8.5 mm internal diameter)
was filled with copper wire (ca. 24 g) and incased with the inductor.
The reactor (void volume: 2 mL) was connected to the pump and on
the outlet side to a back pressure device (6.9 bar) which led to
a scavenger cartridge which was filled with QuadrapureTM TU.
Behind the scavenger cartridge the collection vial was placed. The system
was flushed with DMF, and the temperature was adjusted to 200 ˚C.
After the flow (flow rate 0.1 mL/min) and temperature values
reached a steady state a solution of bromo acid 17 (0.04
M) in DMF was pumped through the system (residence time approx.
20 min). After collection of the crude product, the mixture was
diluted with H2 O, extracted with EtOAc, and dried (MgSO4 ).
After evaporation of the solvent in vacuo the crude product was purified
by flushing through a short pad of silica to yield compound 18 in 95% yield as a pale brownish
solid.