Abstract
A new type of magnetite/silica nanoparticle-supported N-heterocyclic
carbene nickel catalyst (Mag-NHC-Ni) was developed from imidazolium
with N -picolyl moieties and used as an
efficient catalyst in the C-S coupling of various aryl
halides with thiols. Moreover, the catalyst was easily recovered
from the reaction mixture by simple filtration and recycled with
almost consistent activity.
Key words
heterogeneous catalysis - cross-coupling - magnetic nanoparticle - nickel
References and Notes
1a
Amorati R.
Fumo MG.
Menichetti S.
Mugnaini V.
Pedulli G.
J. Org. Chem.
2006,
71:
6325
1b
Bonnet B.
Soullez D.
Girault S.
Maes L.
Landry V.
Davioud-Charvet E.
Sergheraert C.
Bioorg.
Med. Chem.
2000,
8:
95
1c
Liu G.
Link JT.
Pei Z.
Reilly E.
Leitza S.
Nguyen B.
Marsh KC.
Okasinski GF.
von Geldern
TW.
Ormes M.
Fowler K.
Gallatin M.
J. Med. Chem.
2000,
43:
4025
1d
Liu L.
Stelmach JE.
Natarajan SR.
Chen M.
Singh SB.
Schwartz CD.
Fitzgerald CE.
O’Keefe SJ.
Zaller DM.
Schmatz DM.
Doherty JB.
Bioorg.
Med. Chem. Lett.
2003,
13:
3979
2a
Wang Y.
Chackalamannil S.
Chang W.
Greenlee W.
Ruperto V.
Duffy RA.
McQuade R.
Lachowicz
JE.
Bioorg. Med. Chem. Lett.
2001,
11:
891
2b
Liu G.
Huth JR.
Olejniczak ET.
Mendoza R.
DeVries P.
Leitza S.
Reilly EB.
Okasinski GF.
Fesik SW.
von Geldern TW.
J. Med. Chem.
2001,
44:
1202
3a
De Martino G.
La Regina G.
Coluccia A.
Edler
MC.
Barbera MC.
Brancale A.
Wilcox E.
Hamel E.
Artico M.
Silvestri R.
J.
Med. Chem.
2004,
47:
6120
3b
De Martino G.
Edler MC.
La Regina G.
Coluccia A.
Barbera MC.
Barrow D.
Nicholson RI.
Chiosis G.
Brancale A.
Hamel E.
Artico M.
Silvestri R.
J. Med. Chem.
2006,
49:
947
4
Kaldor SW.
Kalish VJ.
Davies JF.
Shetty BV.
Fritz JE.
Appelt K.
Burgess JA.
Campanale KM.
Chirgadze NY.
Clawson DK.
Dressman BA.
Hatch SD.
Khalil DA.
Kosa MB.
Lubbehusen PP.
Muesing MA.
Patick AK.
Reich SH.
Su KS.
Tatlock JH.
J.
Med. Chem.
1997,
40:
3979
5
Kondo T.
Mitsudo T.
Chem. Rev.
2000,
100:
3205
6a
Mann G.
Baranano D.
Hartwig JF.
Rheingold AL.
Guzei IA.
J.
Am. Chem. Soc.
1998,
120:
9205
6b
Li GY.
Angew.
Chem. Int. Ed.
2001,
40:
1513
6c
Schopfer U.
Schlapbach A.
Tetrahedron
2001,
57:
3069
6d
Itoh T.
Mase T.
Org. Lett.
2004,
6:
4587
6e
Mispelaere-Canivet C.
Spindler J.
Perrio S.
Beslin P.
Tetrahedron
2005,
61:
5253
6f
Moreau X.
Campagne JM.
Meyer G.
Jutand A.
Eur. J. Org. Chem.
2005,
17:
3749
6g
Fernández-Rodríguez MA.
Shen Q.
Hartwig JF.
J. Am. Chem. Soc.
2006,
128:
2180
7a
Kwong FY.
Buchwald SL.
Org. Lett.
2002,
4:
3517
7b
Bates CG.
Gujadhur RK.
Venkataraman D.
Org. Lett.
2002,
4:
2803
7c
Wu Y.
He H.
Synlett
2003,
1789
7d
Ley SV.
Thomas AW.
Angew. Chem. Int.
Ed.
2003,
42:
5400
7e
Deng W.
Zou Y.
Wang Y.
Liu L.
Guo Q.
Synlett
2004,
1254
7f
Rout L.
Sen TK.
Punniyamurthy T.
Angew.
Chem. Int. Ed.
2007,
46:
5583
7g
Rout L.
Saha P.
Jammi S.
Punniyamurthy T.
Eur. J. Org. Chem.
2008,
640
7h
Xu H.
Zhao X.
Fu Y.
Feng Y.
Synlett
2008,
3063
7i
Bhadra S.
Sreedhar B.
Ranu BC.
Adv. Synth.
Catal.
2009,
351:
2369
7j
Gonzalez-Arellano C.
Luque R.
Macquarrie DJ.
Chem. Commun.
2009,
1410
8a
Takagi K.
Chem. Lett.
1987,
16:
2221
8b
Percec V.
Bae J.
Hill DH.
J.
Org. Chem.
1995,
60:
6895
8c
Baldovino-Pantaleón O.
Hernández-Ortega S.
Morales-Morales D.
Adv. Synth. Catal.
2006,
348:
236
8d
Jammi S.
Barua P.
Rout L.
Saha P.
Punniyamurthy T.
Tetrahedron
Lett.
2008,
49:
1484
9
Wong Y.
Jayanth TT.
Cheng C.
Org.
Lett.
2006,
8:
5613
10a
Correa A.
Carril M.
Bolm C.
Angew. Chem. Int. Ed.
2008,
47:
2880
10b
Akkilagunta VK.
Reddy VP.
Rao KR.
Synlett
2010,
1260
11a
Reddy VP.
Kumar AV.
Swapna K.
Rao KR.
Org. Lett.
2009,
11:
1697
11b
Reddy VP.
Swapna K.
Kumar AV.
Rao KR.
J.
Org. Chem.
2009,
74:
3189
12
Murthy SN.
Madhav B.
Reddy VP.
Nageswar YVD.
Eur. J.
Org. Chem.
2009,
5902
13a
Byun J.
Lee Y.
Tetrahedron
Lett.
2004,
45:
1837
13b
Kim J.
Jun B.
Byun J.
Lee Y.
Tetrahedron Lett.
2004,
45:
5827
13c
Kim J.
Kim J.
Shokouhimehr M.
Lee Y.
J. Org. Chem.
2005,
70:
6714
13d
Shokouhimehr M.
Kim J.
Lee Y.
Synlett
2006,
618
13e
Kim J.
Kim J.
Lee D.
Lee Y.
Tetrahedron Lett.
2006,
47:
4745
13f
Lee S.
Yoon H.
Kim J.
Chung W.
Lee Y.
Pure Appl. Chem.
2007,
79:
1553
13g
Kim J.
Lee D.
Jun B.
Lee Y.
Tetrahedron Lett.
2007,
48:
7079
13h
Lee D.
Kim J.
Jun B.
Kang H.
Park J.
Lee Y.
Org.
Lett.
2008,
10:
1609
13i
Jun B.
Kim J.
Park J.
Kang H.
Lee S.
Lee Y.
Synlett
2008,
2313
13j
Yoon H.
Lee S.
Kim J.
Cho H.
Choi J.
Lee S.
Lee Y.
Tetrahedron Lett.
2008,
49:
3165
13k Choi, J.; Yoon, H.;
Lee, S.; Kim, J.; Kim, J.; Lee, Y., submitted for publication.
14a
Schätz A.
Hager M.
Reiser O.
Adv. Funct. Mater.
2009,
19:
2109
14b
Taher A.
Kim J.
Jung J.
Ahn W.
Jin M.
Synlett
2009,
2477
15
Stevens PD.
Li G.
Fan J.
Yen M.
Gao Y.
Chem. Commun.
2005,
4435
16a
Öfele K.
J. Organomet. Chem.
1968,
12:
P42
16b
Herrmann WA.
Angew. Chem. Int. Ed.
2002,
41:
1290
17
Zhang Y.
Ngeow KC.
Ying JY.
Org.
Lett.
2007,
9:
3495
18
Synthesis of Silica-Coated
Magnetic Particles : A two-necked round-bottomed flask (RBF)
containing NH4 OH (250 mL) and deionized (DI) H2 O
(250 mL) was vigorously stirred with an overhead stirrer at 500
rpm. A freshly prepared aq solution of iron chloride (100 mL) containing FeCl2 ˙4H2 O
(2.57 g, 12.93 mmol) and FeCl3 ˙6H2 O
(6.18 g, 22.6 mmol) was dropwise mixed with NH4 OH solution
for 30 min. The resultant mixture was stirred for additional 1 h at
r.t., then the formed MNPs were separated using a magnet (4000 gauss).
The MNPs were washed with DI H2 O (20 ×) and
MeOH (5 ×) by repeating magnet separation and decantation.
The MNPs (1.35 g) dried in vacuo were treated with 1% 3-aminopropyltriethoxysilane
in CHCl3 (80 mL) at 60 ˚C for 4 h. The aminated
MNPs were washed with CHCl3 (10 ×) and MeOH
(5 ×) by repeating magnet separation and decantation. The
MNPs (1 g) dried in vacuo (elemental analysis, N%: 0.382%,
0.27 mmol/g) were treated with 2% TEOS (tetraethyl
orthosilicate) in EtOH and shaken at 30 ˚C for 12 h. The
particles were washed with EtOH (6 ×) repeating magnet
separation and decantation.
19a
Chiu PL.
Lai C.
Chang C.
Hu C.
Lee HM.
Organometallics
2005,
24:
6169
19b
Inamoto K.
Kuroda J.
Danjo T.
Sakamoto T.
Synlett
2005,
1624
20
Preparation of
Catalyst 5 [MNP-Si-NHC(Pyr)-Ni] and Catalyst 7 [MNP-Si-NHC(Bz)-Ni] :
The aforementioned magnetic nanoparticles (MNPs) were redispersed
in toluene and the resulting solution was heated to reflux. Then,
1-(3-triethoxysilylpropyl)-2-imidazoline was added. After 24 h, the
solution was cooled to r.t. MNPs were concentrated magnetically
by using an external permanent magnet and washed with toluene and
EtOH. Imidazolinyl-functionalized MNPs were redispersed and reacted
with 2-picolyl chloride or benzyl chloride at 80 ˚C in
CHCl3 for 12 h, affording 4 and 6 . After washing, the loadings of imidazoles
on MNP-Si were determined by their nitrogen contents by elementary analysis
(4 , 0.47 mmol/g; 6 ,
0.67 mmol/g). The NHC ligand functionalized MNPs were then
redissolved in a mixture of Ni(acac)2 at 60 ˚C
in DMSO under basic conditions (Scheme
[² ]
). After 12 h, the mixture
was cooled to r.t., and then catalyst 5 [MNP-Si-NHC(Pyr)-Ni] or
catalyst 7 [MNP-Si-NHC(Bz)-Ni] were
magnetically separated by using the external magnet. The prepared
catalysts were washed with CHCl3 , EtOH, and H2 O
subsequently.
21
General Procedure
for C-S Cross-Coupling Reaction : To a mixture of 10
mol% of catalyst in DMF (1 mL) and Cs2 CO3 (2
mmol) were added an aryl halide (1 mmol) and a thiol (1
mmol). The temperature was raised to 100 ˚C. After 10 h, the
mixture was cooled to r.t. The used catalysts were removed magnetically
by using an external permanent magnet and dried for reuse in the
next round of reactions. The desired products were washed with H2 O
and extracted with EtOAc. Then, the organic phase was evaporated
in vacuo and the residues were subjected to flash column chromatography
purification.
22 After the 4th run, unfortunately
the coupling yields were decreased (ca. 10%) and leaching
of nickel species was detected from the filtrates after the 4th run
and the 5th run (14% and 18%, by ICP-AES
analysis of the filtrate).