Subscribe to RSS
DOI: 10.1055/s-0030-1258996
Facile Epoxidation of α,β-Unsaturated Ketones with trans-3,5-Dihydroperoxy-3,5-dimethyl-1,2-dioxolane as an Efficient Oxidant
Publication History
Publication Date:
08 October 2010 (online)

Abstract
Application of trans-3,5-dihydroperoxy-3,5-dimethyl-1,2-dioxolane as an efficient oxygen source has been explored in the epoxidation of trans-chalcones. The reactions proceed under mild conditions at room temperature in alkaline solution to afford the corresponding epoxides in excellent yields.
Key words
α,β-unsaturated ketone - epoxide - dihydroperoxide - trans-3,5-dihydroperoxy-3,5-dimethyl-1,2-dioxolane - epoxidation
- 1
Jones CW. Application of Hydrogen Peroxide and Derivatives RSC; Cambridge: 1999. - 2
Sanchez DAG. Synlett 2008, 1101 - 3
Grigoropoulou G.Clark JH.Elings JA. Green Chem. 2003, 5: 1 - 4
Miranda Les P.Lubell DW.Halkes MK.Groth T.Grotli M.Rademann J.Gotferdsen CH.Meldal M.
J. Comb. Chem. 2002, 4: 523 - 5
Cole DC.Stock JR.Kappel JA. Bioorg. Med. Chem. Lett. 2002, 12: 1791 - 6 For reviews, see:
Nardello V.Aubry J.-M.De Vos DE.Neumann R.Adam W.Zhang R.ten Elshof JE.Witte PT.Alsters PL. J. Mol. Catal. A.: Chem. 2006, 251: 185 - 7
Lane BS.Burgess K. Chem. Rev. 2003, 103: 2457 - 8
Benjamin S.Lane SS.Kevin B. Chem. Rev. 2003, 103: 2457 - 9 For a review, see:
Kratz T.Zeiss W. In Peroxide ChemistryAdam W. Wiley-VCH; Weinheim: 2000. p.41-59 - 10 For leading examples, see:
Iskara J.Bonnet-Delpon D.Begue JP. Tetrahedron Lett. 2003, 44: 6309 - 11
Tsuchiya K.Hamada Y.Masuyama A.Nojima M.McCullough KJ.Kim H.-S.Shibata Y.Wataya Y. Tetrahedron Lett. 1999, 40: 4077 - 12
Selvam JJP.Suresh V.Rajesh K.Rabu DC.Suryakiran N.Venkateswalu Y. Tetrahedron Lett. 2008, 49: 3463 - 13
Zheng Y.-J.Bruice TC. Bioorg. Chem. 1997, 25: 331 - 14
Merényi G.Lind J. J. Am. Chem. Soc. 1991, 113: 3146 - 15
Miller AE.Bischoff JJ.Bizub C.Luminoso P.Smiley S. J. Am. Chem. Soc. 1986, 108: 7773 - 16
Doerge DR.Corbett MD. Mol. Pharmacol. 1984, 26: 348 - 17
Oae S.Asada K.Yoshimura T. Tetrahedron Lett. 1983, 24: 1265 - 18
Bruice TC.Noar JB.Ball SS.Venkataram UV.
J. Am. Chem. Soc. 1983, 105: 2452 - 19
Ball S.Bruice TC. J. Am. Chem. Soc. 1981, 103: 5494 ; and references cited therein - 20
Kośnik W.Bocian W.Kozerski L.Tvaroška I.Chmielewski M. Chem. Eur. J. 2008, 14: 6087 - 21
Azarifar D.Khosravi K. Eur. J. Chem. 2010, 15 - 22
Bez G.Zhao C.-G. Tetrahedron Lett. 2003, 44: 7403 - 23
Adam W.Saha-Möller CR.Zhao C.-G. Tetrahedron: Asymmetry 1999, 10: 2749 - 24
Adam W.Saha-Möller CR.Ganeshpure PA. Chem. Rev. 2001, 101: 3499 - 25
Udin AK. Aziridines and Epoxides in Organic Synthesis Wiley-VCH; Weinheim: 2006. - 26
Rudolph J.Reddy KL.Chiang JP.Sharpless KB.
J. Am. Chem. Soc. 1997, 119: 6189 - 27
Li Z.Zhou Z.Li K.Wang L.Zhou Q.Tang C. Tetrahedron Lett. 2002, 43: 7609 - 28
De Vos DE.Sels BF.Reynaers M.Rao YVS.Jacobs PA. Tetrahedron Lett. 1998, 39: 3221 - 29
Bonini C.Righi G. Tetrahedron 2002, 58: 4981 - 30
Wong E. In Chemistry and Biochemistry of Plants PigmentsGoodwin TW. Academic; New York: 1976. - 31
Dhar DN. The Chemistry of Chalcones and Related Compounds Wiley Interscience; New York: 1981. - 32
Bohm BA. In The Flavonoids: Advances in Research Since 1980Harborne JB. Chapman and Hall; London: 1988. - 33
Roberts S.Skidmore J. Chem. Ber. 2002, 31 - 34
Martinelli MJ.Peterson BC.Khau VV.Hutchison DR.Leana MR.Audia JE.Droste JJ.Wu YD.Houk KN. J. Org. Chem. 1986, 51: 3098 - 35
Solladie GS.Hutt J. J. Org. Chem. 1987, 52: 3560 - 36
Hoeger CA.Johnstone AD.Okamura WH. J. Am. Chem. Soc. 1987, 109: 4690 - 37
Baures PW.Egglestone DS.Flisak JR.Gonbatz K.Lantos I.Mendelson W.Remich JJ. Tetrahedron Lett. 1990, 31: 6501 - 38
Itsuno S.Sakaura M.Ito K. J. Org. Chem. 1990, 55: 6047 - 39
Honma T.Nakajo N.Mizugaki T.Ebitani K.Kaneda K. Tetrahedron Lett. 2002, 43: 6229 - 40
Lakouraj MM.Movassagh B.Bahrami K. Synth. Commun. 2001, 31: 1237 - 41
Miyashita M.Suzuki T.Yoshkoshi A. Chem. Lett. 1987, 285 - 42
Straub TS. Tetrahedron Lett. 1995, 36: 663 - 43
Sharifi A.Bolourtchian M.Mohsenzadeh F. J. Chem. Res. 1998, 668 - 44
Jakka K.Liu J.Zhao CG. Tetrahedron Lett. 2007, 48: 1395 - 45
Bernini R.Mincione E.Coratti A.Fabrizi G.Battistuzzi G. Tetrahedron 2004, 60: 967 - 46
Pluim H.Wynberg H. J. Org. Chem. 1980, 45: 2498 - 47
Burke SD.Murtiashaw CW.Saunders JO.Oplinger JA.Dike MS. J. Am. Chem. Soc. 1984, 106: 4558 - 48
Yadav VK.Kapoor KK. Tetrahedron Lett. 1994, 35: 9481 - 49
Acene JL.Arjona O.Dellapradilla RF.Plumet J.Viso A. J. Org. Chem. 1994, 59: 6419 - 50
Baggiolini EG.Iacobelli JA.Hennessy BM.Batcho AD.Sereno JF.Uskokovic MR. J. Org. Chem. 1986, 51: 3098 - 51
Lv J.Wang X.Liu J.Zhang L.Wang Y. Tetrahedron: Asymmetry 2006, 17: 330 - 52
Kienle M.Argyarakis W.Baro A.Laschat S. Tetrahedron Lett. 2008, 49: 1971 - 53
Azarifar D.Khosravi K.Soleimani F. Synthesis 2009, 2553 - 54
Azarifar D.Khosravi K.Soleimani F. Molecules 2010, 15: 1433 - 56
Zolfigol MA.Chehardoli G.Shiri M. React. Funct. Polym. 2007, 67: 723
References and Notes
Caution
Although
we did not encounter any problem with trans-3,5-dihydroperoxy-3,5-dimethyl-1,2
dioxolane (1), it is potentially explosive
and should be handled with precautions; all reactions should be
carried out behind a safety shield inside a fume hood and transition-metal
salts or heating should be avoided.
Preparation
of trans-3,5-Dihydroperoxy-3,5-dimethyl-1,2-dioxolane
(1)
²¹
To
a stirred solution of acetylacetone (100 mg, 1 mmol) in MeCN (5
mL) was added SnCl2×2H2O (45 mg, 0.2 mmol), and
stirring of the reaction mixture was continued for 5 min at r.t.
Then, aq 30% H2O2 (5 mmol) was added
to the reaction mixture and was allowed to stir for 12 h at r.t.
After completion of the reaction as monitored by TLC, H2O
(15 mL) was added, and the product was extracted into EtOAc (2 Ž 10
mL). The combined organic layer was dried over anhyd MgSO4 and
evaporated under reduced pressure to give almost pure white crystalline
product 1, in 85% yield (140 mg);
mp 98-100 ˚C.
General
Experimental Procedure
To a mixture of trans-chalcone 2 (1.0
mmol) and trans-3,5-dihydroperoxy-3,5-dimethyl-1,2-dioxolane
(1, 166 mg, 1 mmol) in
DME (5 mL) was added 1.0 M aq KOH solution (1 mL). The reaction
mixture was stirred at r.t. for 2 h. After completion of the reaction
(TLC), the remaining peroxide was neutralized with aq Na2SO3 solution.
The resulting mixture was diluted with Et2O (15 mL) and
washed with H2O (10 mL). The organic layer was dried
over anhyd MgSO4, and then the solvent was removed under
reduced pressure. The remaining crude product was purified by column
chromatography (eluent hexane-EtOAc, 90:10) to provide
pure epoxide 3 (Table 2). Physical and
spectroscopic (IR, ¹H NMR, and ¹³C
NMR) data for some selected compounds are given.
Compound 3g: white solid, mp 72-74 ˚C. ¹H
NMR (90 MHz, CDCl3-TMS): δ = 7.10-8.00
(m, 8 H), 4.42 (d, 1 H), 4.03 (d, 1 H), 2.21 (s, 3 H). ¹³C
NMR (22.5 MHz, CDCl3): δ = 195.1,
143.6, 136.0, 134.2, 129.0, 125.8, 70.3, 63.0, 25.5. IR (KBr): νmax = 3069,
1677, 1605, 1415, 1236, 1162, 1012, 899, 766, 674 cm-¹.
Anal. Calcd (%) for C16H13ClO2: C,
70.59; H, 4.78. Found: C, 70.52.14; H, 4.74. MS (EI):
m/z = 272 [M+].
Compound 3m: white solid, mp 78-80 ˚C. ¹H
NMR (90 MHz, CDCl3-TMS): δ = 7.20-8.00
(m, 9 H), 4.36 (d, 1 H), 4.04 (d, 1 H), 2.37 (s, 3 H). ¹³C
NMR (22.5 MHz, CDCl3): δ = 193.5,
155.0, 150.8, 142.4, 136.0, 131.05, 129.7, 126.0, 114.4, 72.5, 62.1,
55.6. IR (KBr): νmax = 3020, 2983,
2867, 1667, 1583, 1502, 1455, 1305, 1279, 1165, 1140, 1054, 827, 731,
693 cm-¹. Anal. Calcd (%)
for C16H14O2: C, 80.67; H, 5.88.
Found: C, 80.63; H, 5.82. MS (EI): m/z = 238 [M+].
Compound 3o: white solid, mp 146-148 ˚C. ¹H
NMR (90 MHz, CDCl3-TMS): δ = 7.50-8.30
(m, 9 H), 4.30 (d, 1 H), 4.18 (d, 1 H). ¹³C
NMR (22.5 MHz, CDCl3): δ = 192.2, 153.8,
143.5, 140, 138.0, 130.7, 128.5, 125.0, 119.6, 70.1, 62.5. IR (KBr): νmax = 3063,
1659, 1594, 1493, 1395, 1333, 1128, 824, 742, 687 cm-¹.
Anal. Calcd (%) for C15H11NO4: C,
66.91; H, 4.09; N, 5.20. Found: C, 66.82; H, 4.02; N, 5.15. MS (EI):
m/z = 269 [M+].
Compound 3p: white solid, mp 117-119 ˚C. ¹H
NMR (90 MHz, CDCl3-TMS): δ = 7.50-8.03
(m, 9 H), 4.32 (d, 1 H), 4.22 (d, 1 H). ¹³C
NMR (22.5 MHz, CDCl3): δ = 198.2, 153.8,
145.7, 137.4, 134.3, 133.0, 129.5, 126.8, 121.7, 71.1, 62.0. IR
(KBr): νmax = 3061, 3025, 2923, 1797,
1595, 1495, 1395, 1337, 1139, 848, 747, 690 cm-¹.
Anal. Calcd (%) for C15H11NO4:
C, 66.91; H, 4.09; N, 5.20. Found: C, 66.85; H, 4.04; N, 5.17. MS
(EI): m/z = 269 [M+].