Subscribe to RSS
DOI: 10.1055/s-0030-1259074
Convergent Approach to Nonsymmetrical 2,5-Diester Pyrroles
Publication History
Publication Date:
25 November 2010 (online)

Abstract
A convergent approach towards nonsymmetrical 2,5-diester pyrroles is described. The building blocks can be easily assembled in less than four steps allowing for facile construction of diversity. The synthesis uses a rhodium-catalyzed NH insertion, followed by a one-pot deprotection-condensation to yield the desired pyrroles.
Key words
pyrrole - rhodium catalysis - NH insertion - zinc deprotection - enamine
- Supporting Information for this article is available online:
- Supporting Information
-
1a For
examples of natural products bearing a pyrrole:
Gupton JT. Topics in Heterocyclic Chemistry Vol. 2:Lee M. Springer; Berlin: 2006. p.53 -
1b
Roth BD. inventors; US Patent 4681893. For drugs containing a pyrrole, one of the best-known examples is Lipitor®: - For a recent review on pyrrole synthesis:
-
2a
Schmuck C.Rupprecht D. Synthesis 2007, 3095 -
2b
Ferreira VF.De Souza MC.Cunha AC.Pereira LOR.Ferreira MLG. Org. Prep. Proced. Int. 2001, 33: 411 -
3a
Schmuck C.Geiger L. J. Am. Chem. Soc. 2004, 126: 8898 -
3b
Hekmatshoar R.Nouri R.Beheshtiha S. Heteroat. Chem. 2008, 19: 100 -
3c
Beckert R.Buehrdel G.Herzigova P.Petrlikova E.Schuch D.Birckner E.Goerls H. Eur. J. Org. Chem. 2009, 3404 -
3d
Gupton JT.Giglio BC.Eaton JE.Rieck EA.Smith KL.Keough MJ.Barelli PJ.Firich LT.Hempel JE.Smith TM.Kanters RPF. Tetrahedron 2009, 65: 4283 -
3e
Takamura N.Yasui E.Mada M. Tetrahedron Lett. 2009, 50: 4762 -
3f
Ciez D. Org. Lett. 2009, 11: 4282 -
3g
Jiang H.Lui W.Huang L. Org. Lett. 2010, 12: 312 - 5
Baum JS.Shook DA.Davies HML.Smith HD. Synth. Commun. 1987, 17: 1709 - The stereochemistry of compounds 7 and 8 was not determined since it is irrelevant for the later chemistry. Opposite stereochemistry have been assigned to analogous enamines in literature:
-
6a
Yamada M.Nakao K.Fukui T.Nunami K. Tetrahedron 1996, 52: 5751 -
6b
Das J.Reid JA.Kronenthal DR.Singh J.Pansegrau PD.Mueller RH. Tetrahedron Lett. 1992, 33: 7835 -
6c
Singh J.Kronenthal DR.Schwinden M.Godfrey JD.Fox R.Vawter EJ.Zhang B.Kissick TP.Patel B.Mneimne O.Humora M.Papaioannou CG.Szymanski W.Wong MKY.Chen CK.Heikes JE.DiMarco JD.Qiu J.Deshpande RP.Gougoutas JZ.Mueller RH. Org. Lett. 2003, 3155 -
6d
Queiroz M.-J.Monteiro LS.Silva NO.Abreu AS.Ferreira PMT. Eur.
J. Org. Chem. 2002, 2524 -
7a Thiophenol
removal:
Hamel P.Girard Y.Atkinson JG. J. Chem. Soc., Chem. Commun. 1989, 63 -
7b Bromide removal:
Chang MN.Biftu T.Boulton DA.Finke PE.Hammond ML.Pessolano AA.Zambias RA.Bailey P.Goldenberg M.Rackham A. Eur. J. Med. Chem. 1986, 363 -
8a
Sowerby RL.Coates RM. J. Am. Chem. Soc. 1972, 4758 -
8b
Kuwajima I.Sato S.-J.Kurata Y. Tetrahedron Lett. 1972, 737
References and Notes
No pyrrole was observed when the keto enamine 2a was submitted under thermal or dehydrating conditions in the absence of zinc.
9Optimization of the deprotection-cyclization involved screening for organic solvents, aqueous solvent (pH 1-14 buffer), metal used, quantity of zinc, temperature, and reaction time.
10
General Procedure
for the Synthesis of Compounds 2a-i
To a
stirred solution of 8 (1.70 mmol) and Rh2(oct)4 (0.085 mmol)
in CH2Cl2 (4 mL) at 20 ˚C
was added a solution of 4 (3.40 mmol) in
CH2Cl2 (2 mL) over a period of 20 min. The mixture
was stirred for 1 h; gas evolution was observed. The reaction mixture
was partitioned between CH2Cl2 and a sat. NaHCO3 solution,
back extracted with CH2Cl2. Combined organic
layers were washed with brine, dried over MgSO4, and
concentrated under vacuum. Purification by flash chromatography
(silica gel, 230-400 mesh; Merck) using hexanes-EtOAc
yielded 2 as a pure product.
Methyl 2-{(1-Ethoxy-1,3-dioxo-3-phenylpropan-2-yl)[(2,2,2-trichloroethoxy)carbonyl]amino}-3-(phenylthio)acrylate (2a)
¹H NMR
(400 MHz, acetone-d
6): δ = 8.12
(br, 1 H), 7.58-7.51 (m, 2 H), 7.53-7.45 (m, 3
H), 7.45-7.39 (m, 2 H), 7.38-7.30 (m, 2 H), 7.30-7.24
(m, 2 H), 4.83 (s, 2 H), 3.78 (q, J = 7.1
Hz, 2 H), 3.60 (s, 3 H), 0.79 (t, J = 7.1
Hz, 3 H) ppm. ¹³C NMR (101 MHz, acetone-d
6): δ = 165.9,
165.0, 159.8, 153.3, 149.7, 134.7, 133.7, 131.6, 131.1, 130.0, 129.7, 129.6,
128.1, 114.9, 112.3, 96.7, 75.2, 61.9, 52.1, 13.8 ppm. IR (neat):
3311 (br), 2982, 1715, 1439, 1268, 1179, 1128, 1034, 732. ESI-HRMS: m/z calcd for C24H22Cl3NNaO7S
[M + Na]:
598.0049; found: 598.0044.
General
Procedure for the Synthesis of Compounds 1a-i
To
a stirred solution 2 (0.35 mmol) in 2-PrOH
(3.5 mL) and H2O (0.627 mL, 35 mmol) was added zinc (228
mg, 3.5 mmol). Mixture was heated to 60 ˚C and
stirred for 24 h. The suspension was filtered on Celite, then concentrated
under vacuum. Purification by flash chromatography (silica gel, 230-400
mesh; Merck) using hexanes-EtOAc yielded 1 as
a pure product.
2-Ethyl 5-Methyl 3-Phenyl-1
H
-pyrrole-2,5-dicarboxylate (1a)
¹H NMR
(400 MHz, acetone-d
6): δ = 11.43
(br, 1 H), 7.69-7.65 (m, 2 H), 7.42-7.39 (m, 3
H), 7.30 (s, 1 H), 4.16 (q, J = 7.1
Hz, 2 H), 3.81 (s, 3 H), 1.22 (t, J = 7.1
Hz, 3 H) ppm. ¹³C NMR (101 MHz, acetone-d
6): δ = 164.2,
161.3, 141.7, 131.9, 130.6, 129.5, 128.5, 123.3, 118.8, 114.7, 60.2,
51.8, 14.5 ppm. IR (neat): 3706 (br), 3306, 2973, 1692, 1467, 1249,
1143, 1035, 757, 687. ESI-HRMS: m/z calcd
for C15H16NO4 [M + H]:
274.1074; found: 274.1077.