Synlett 2011(3): 345-348  
DOI: 10.1055/s-0030-1259311
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of Aryl Stannanes from Silyl Triflates via Aryne Intermediates

B. Vasantha Lakshmi, Ulrike K. Wefelscheid, Uli Kazmaier*
Institut für Organische Chemie, Universität des Saarlandes, 66123 Saarbrücken, Germany
Fax: +49(681)3022409; e-Mail: u.kazmaier@mx.uni-saarland.de;
Further Information

Publication History

Received 25 November 2010
Publication Date:
13 January 2011 (online)

Abstract

Aryl stannanes are easily accessible from o-silylated aryl triflates in the presence of KF and Bu3SnH. The corresponding arynes are formed in situ, and undergo clean hydrostannation to give a mixture of the regioisomeric aryl stannanes. The whole reaction sequence can also be carried out as a one-pot reaction under microwave irradiation.

    References and Notes

  • 1a Stille JK. Angew. Chem., Int. Ed. Engl.  1986,  25:  508 ; Angew. Chem. 1986, 98, 504
  • 1b Davies AG. In Comprehensive Organometallic Chemistry II   Vol. 2:  Pergamon; New York: 1995.  p.217 
  • 1c Davies AG. Organotin Chemistry   VCH; Weinheim: 1997. 
  • For reviews, see:
  • 2a Smith ND. Mancuso J. Lautens M. Chem. Rev.  2000,  100:  3257 
  • 2b Trost BM. Ball ZT. Synthesis  2005,  853 ; and references cited therein
  • 3 Hayashi T. Ishigedani M. Tetrahedron  2001,  57:  2589 
  • 4a Gilman H. Rosenberg SD. J. Am. Chem. Soc.  1953,  75:  2507 
  • 4b Earbon C. Seconi G. J. Chem. Soc., Perkin Trans. 2  1976,  925 
  • 4c Iddon B. Lim BL. J. Chem. Soc., Perkin Trans. 1  1983,  271 
  • 5a Knochel P. Singer RD. Chem. Rev.  1993,  93:  2117 
  • 5b Zhu X. Blough BE. Caroll FI. Tetrahedron Lett.  2000,  41:  9219 
  • 5c Gosmini C. Perichon J. Org. Biomol. Chem.  2005,  216 
  • 6a Kosugi M. Shiminu K. Ohtani A. Migita T. Chem. Lett.  1981,  829 
  • 6b Kosugi M. Ohya T. Migita T. Bull. Chem. Soc. Jpn.  1983,  56:  3855 
  • 7a Lockhart MT. Chopa AB. Rossi RA.
    J. Organomet. Chem.  1999,  582:  229 
  • 7b Chopa AB. Lockhart MT. Silbestri G. Organometallics  2001,  20:  3358 
  • 7c Chopa AB. Lockhart MT. Silbestri G. Organometallics  2000,  19:  2249 
  • 8a Yoshida H. Tanino K. Ohshita J. Kunai A. Angew. Chem. Int. Ed.  2004,  43:  5052 ; Angew. Chem. 2004, 116, 5162
  • 8b Yoshida H. Tanino K. Ohshita J. Kunai A. Chem. Commun.  2005,  5678 
  • 9a Kazmaier U. Schauß D. Pohlman M. Org. Lett.  1999,  1:  1017 
  • 9b Kazmaier U. Pohlman M. Schauß D. Eur. J. Org. Chem.  2000,  2761 
  • 9c Kazmaier U. Schauß D. Pohlman M. Raddatz S. Synthesis  2000,  914 
  • 9d Kazmaier U. Schauß D. Raddatz S. Pohlman M. Chem. Eur. J.  2001,  7:  456 
  • 9e Braune S. Kazmaier U.
    J. Organomet. Chem.  2002,  641:  26 
  • 9f Braune S. Pohlman M. Kazmaier U. J. Org. Chem.  2004,  69:  468 
  • 9g Kazmaier U. Dörrenbächer S. Wesquet A. Lucas S. Kummeter M. Synthesis  2007,  320 
  • 9h Lakshmi BV. Kazmaier U. Synlett  2010,  407 
  • 10a Himeshima Y. Sonoda T. Kobayashi H. Chem. Lett.  1983,  1211 
  • 10b Peña D. Escudero S. Pérez D. Guitián E. Castedo L. Angew. Chem. Int. Ed.  1998,  37:  2659 ; Angew. Chem. 1998, 110, 2804. For this and other methods to generate arines and for applications see the following reviews:
  • 10c Pellissier H. Santelli M. Tetrahedron  2003,  59:  701 
  • 10d Yoshida H. Ohshita J. Kunai A. Bull. Chem. Soc. Jpn.  2010,  83:  199 
  • 11a Himeshima Y. Kobayashi H. Sonoda T. J. Am. Chem. Soc.  1985,  107:  5286 
  • 11b Peña D. Pérez D. Guitián E. Castedo L. J. Org. Chem.  2000,  65:  6944 
  • 11c Peña D. Cobas A. Pérez D. Guitián E. Synthesis  2002,  1454 
  • 11d Zhijian L. Larock RC. J. Org. Chem.  2006,  71:  3198 
  • 12 Yoshida H. Terayama T. Ohshita J. Kunai A. Chem. Commun.  2004,  1980 
  • 13 Lee K. Gallagher WP. Toskey EA. Chong W. Maleczka RE. J. Organomet. Chem.  2006,  691:  1462 
  • 14 Moriello AS. Balas L. Ligresti A. Cascio MG. Durand T. Morera E. Ortar G. Di Marzo V. J. Med. Chem.  2006,  49:  2320 
15

General procedure for the synthesis of aryl stannanes 2: In a Schlenk flask, silyl triflate 1 (0.33 mmol) was dissolved in THF (3 mL) and hydroquinone (0.033 mmol, 3.6 mg), tributyltin hydride (0.10 mL, 0.39 mmol), 18-crown-6 (174 mg, 0.660 mmol), and KF (37 mg, 0.66 mmol) were added sequentially. The resulting mixture was stirred at 20 ˚C for 2-3 h. The reaction mixture was then diluted with ethyl acetate, filtered through Celite, and concentrated. Column chromatography on silica gel (pentane or hexane with 1 vol% Et3N) gave aryl stannanes 2 as colorless oils.
One-pot synthesis of phenyl stannane and Stille coupling with benzoyl chloride: In a microwave vial, silyl triflate 1a (100 mg, 0.330 mmol) was dissolved in THF (2.0 mL) and hydroquinone (0.033 mmol, 3.6 mg), tributyltin hydride (0.089 mL, 0.33 mmol), 18-crown-6 (174 mg, 0.660 mmol), and KF (37 mg, 0.66 mmol) were added sequentially. The resulting mixture was subjected to microwave irradiation for 15 min at 100 ˚C (max. 200 W). Separately, in a round-bottom flask, [(allyl)PdCl]2 (0.0033 mmol, 1.2 mg) and Ph3P (3.5 mg, 0.013 mmol) were dissolved in THF (2 mL) and stirred at r.t. for 5 min. The resulting solution and benzoyl chloride (70 mg, 0.49 mmol) were added to the crude reaction mixture in the microwave vial, which was subjected to further microwave irradiation at 150 ˚C for 30 min (max. 200 Watt). The reaction mixture was diluted with saturated aq KF (3 mL) and stirred for 30 min. The mixture was extracted with Et2O and the combined organic layers were dried with NaSO4, filtered and concentrated under reduced pressure. Purification of the residue by column chromatography on silica gel (hexane-EtOAc, 19:1) afforded benzophenone as a colorless solid (37 mg, 60%).