Synlett 2011(3): 420-424  
DOI: 10.1055/s-0030-1259319
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Organocatalytic Enantioselective Mannich-Type Reactions of Fluorinated Keto Esters with N-Boc-Aldimines

Sung Je Yoon, Young Ku Kang, Dae Young Kim*
Department of Chemistry, Soonchunhyang University, Asan, Chungnam 336-745, Korea
Fax: +82(41)5301247; e-Mail: dyoung@sch.ac.kr;
Further Information

Publication History

Received 4 November 2010
Publication Date:
13 January 2011 (online)

Abstract

The catalytic enantioselective Mannich reaction promoted by chiral bifunctional organocatalysts is described. The treatment of α-fluoro-β-keto esters with N-Boc aldimines under mild reaction conditions afforded the corresponding β-aminated α-fluoro-β-keto esters with excellent enantioselectivities (up to 98% ee).

    References and Notes

  • 1a Hudlicky M. Pavlath AE. Chemistry of Organic Fluorine Compounds II   American Chemical Society; Washington DC: 1995. 
  • 1b Kirk KLJ. J. Fluorine Chem.  2006,  127:  1013 
  • 1c Isanobor C. O’Hagan D. J. Fluorine Chem.  2006,  127:  303 
  • 1d Muller K. Faeh C. Diederich F. Science  2007,  317:  1881 
  • 1e Kirk KL. Org. Process Res. Dev.  2008,  12:  305 
  • 2a Purser S. Moore PR. Swallow S. Gouverneur V. Chem. Soc. Rev.  2008,  37:  320 
  • 2b Hiyama T. Kanie K. Kusumoto T. Morizawa Y. Shimizu M. Organofluorine Compounds: Chemistry and Applications   Springer-Verlag; Berlin: 2000. 
  • 3a Enantiocontrolled Synthesis of Fluoroorganic Compounds   Soloshonok VA. John Wiley & Sons; Chichester: 1999. 
  • 3b Bravo P. Resnati G. Tetrahedron: Asymmetry  1990,  1:  661 
  • 3c Ramachandran PV. Asymmetric Fluoroorganic Chemistry: Synthesis, Application, and Future Directions   ACS Symposium Series 746:  American Chemical Society; Washington / DC: 2000. 
  • For reviews, see:
  • 4a Mikami K. Itoh Y. Yamanaka M. Chem. Rev.  2004,  104:  1 
  • 4b Ibrahim H. Togni A. Chem. Commun.  2004,  1147 
  • 4c Ma J.-A. Cahard D. Chem. Rev.  2008,  108:  PR1 
  • 4d France S. Weatherwax A. Lectka T. Eur. J. Org. Chem.  2005,  475 
  • 4e Oestreich M. Angew. Chem. Int. Ed.  2005,  44:  2324 
  • 4f Pihko PM. Angew. Chem. Int. Ed.  2006,  45:  544 
  • 4g Prakash GKS. Beier P. Angew. Chem. Int. Ed.  2006,  45:  2172 
  • 4h Bobbio C. Gouverneur V. Org. Biomol. Chem.  2006,  4:  2065 
  • 4i Shibata N. Ishimaru T. Nakamura S. Toru T.
    J. Fluorine Chem.  2007,  128:  469 
  • 4j Brunet VA. O’Hagan D. Angew. Chem. Int. Ed.  2008,  47:  1179 
  • 4k Smits R. Cadicamo CD. Burger K. Koksch B. Chem. Soc. Rev.  2008,  37:  1727 
  • 4l Kang YK. Kim DY. Curr. Org. Chem.  2010,  14:  917 
  • For recent selected examples of catalytic asymmetric fluorinations of active methines, see:
  • 5a Hintermann L. Togni A. Angew. Chem. Int. Ed.  2000,  39:  4359 
  • 5b Kim DY. Park EJ. Org. Lett.  2002,  4:  545 
  • 5c Hamashima Y. Yagi K. Takano H. Tamás L. Sodeoka M. J. Am. Chem. Soc.  2002,  124:  14530 
  • 5d Ma J.-A. Cahard D. Tetrahedron: Asymmetry  2004,  15:  1007 
  • 5e Shibata N. Ishimaru T. Nagai T. Kohno J. Toru T. Synlett  2004,  1703 
  • 5f Bernardi L. Jørgensen KA. Chem. Commun.  2005,  1324 
  • 5g Kim SM. Kim HR. Kim DY. Org. Lett.  2005,  7:  2309 
  • 5h Kim HR. Kim DY. Tetrahedron Lett.  2005,  46:  3115 
  • 5i Ishimaru T. Shibata N. Horikawa T. Yasuda N. Nakamura S. Toru T. Shiro M. Angew. Chem. Int. Ed.  2008,  47:  4157 
  • 5j Lee NR. Kim SM. Kim DY. Bull. Korean Chem. Soc.  2009,  30:  829 
  • 5k Kang SH. Kim DY. Adv. Synth. Catal.  2010,  352:  2783 
  • For asymmetric Michael-type reactions of α-fluoromalonates, see:
  • 6a Kim DY. Kim SM. Koh KO. Mang JY. Bull. Korean Chem. Soc.  2003,  24:  1425 
  • 6b Nichols PJ. DeMattei JA. Barnett BR. LeFur NA. Chuang T.-H. Piscopio AD. Koch K. Org. Lett.  2006,  8:  1495 
  • 6c Kwon BK. Kim SM. Kim DY.
    J. Fluorine Chem.  2009,  130:  759 
  • 6d Companyo X. Hejnova M. Kamlar M. Vesely J. Moyano A. Rios R. Tetrahedron Lett.  2009,  50:  5051 
  • For asymmetric Michael-type reactions of α-fluoro-β-keto esters, see:
  • 7a Nakamura M. Hajra A. Endo K. Nakamura E. Angew. Chem. Int. Ed.  2005,  44:  7248 
  • 7b He R. Wang X. Hashimoto T. Maruoka K. Angew. Chem. Int. Ed.  2008,  47:  9466 
  • 7c Mang JY. Kwon DG. Kim DY. J. Fluorine Chem.  2009,  130:  259 
  • 7d Han X. Luo J. Liu C. Lu Y. Chem. Commun.  2009,  2044 
  • 7e Li H. Zhang S. Yu C. Song X. Wang W. Chem. Commun.  2009,  2136 
  • 7f Oh Y. Kim SM. Kim DY. Tetrahedron Lett.  2009,  50:  4674 
  • 7g Ishimaru T. Ogawa S. Tokunaga E. Nakamura S. Shibata N. J. Fluorine Chem.  2009,  130:  1049 
  • 7h Cui H.-F. Yang Y.-Q. Chai Z. Li P. Zheng C.-W. Zhu S.-Z. J. Org. Chem.  2010,  75:  117 
  • 8a Fukuzumi T. Shibata N. Sugiura M. Yasui H. Nakamura S. Toru T. Angew. Chem. Int. Ed.  2006,  45:  4973 
  • 8b Mizuta S. Shibata N. Goto Y. Furukawa T. Nakamura S. Toru T. J. Am. Chem. Soc.  2007,  129:  6394 
  • 8c Furukawa T. Shibata N. Mizuta S. Nakamura S. Toru T. Shiro M. Angew. Chem. Int. Ed.  2008,  47:  8051 
  • 8d Moon HW. Cho MJ. Kim DY. Tetrahedron Lett.  2009,  50:  4896 
  • 8e Furukawa T. Goto Y. Kawazoe J. Tokunaga E. Nakamura S. Yang Y. Du H. Kakehi A. Shiro M. Shibata N. Angew. Chem. Int. Ed.  2010,  49:  1642 
  • For selected recent reviews, see:
  • 9a Verkade JMM. van Hemert LJC. Quaedflieg PJLM. Rutjes FPJT. Chem. Soc. Rev.  2008,  37:  29 
  • 9b Ting A. Schaus SE. Eur. J. Org. Chem.  2007,  5797 
  • 9c Marques MMB. Angew. Chem. Int. Ed.  2006,  45:  348 
  • 9d Cordova A. Acc. Chem. Res.  2004,  37:  102 
  • For selected examples of Mannich-type reactions of enolates, see:
  • 10a Sikert M. Schneider C. Angew. Chem. Int. Ed.  2008,  47:  3631 
  • 10b Itoh J. Fuchibe K. Akiyama T. Synthesis  2008,  1319 
  • 10c Kobayashi S. Yazaki R. Seki K. Ueno M. Tetrahedron  2007,  63:  8425 
  • 10d Saruhashi K. Kobayashi S. J. Am. Chem. Soc.  2006,  128:  11232 
  • 10e Kobayashi S. Ueno M. Saito S. Mizuki Y. Ishitani H. Yamashita Y. Proc. Natl. Acad. Sci. U.S.A.  2004,  101:  5476 
  • 10f Akiyama T. Itoh J. Yokota K. Fuchibe K. Angew. Chem. Int. Ed.  2004,  43:  1566 
  • 10g Wenzel AG. Jacobsen EN. J. Am. Chem. Soc.  2002,  124:  12964 
  • 11a Hamashima Y. Sasamoto N. Umebayashi N. Sodeoka M. Chem. Asian J.  2008,  3:  1443 
  • 11b Chen Z. Morimoto H. Matsunaga S. Shibasaki M. J. Am. Chem. Soc.  2008,  130:  2170 
  • 11c Kobayashi S. Gustafsson T. Shimizu Y. Kiyohara H. Matsubara R. Org. Lett.  2006,  8:  4923 
  • 11d Hamashima Y. Sasamoto N. Hotta D. Somei H. Umebayashi N. Sodeoka M. Angew. Chem. Int. Ed.  2005,  44:  1525 
  • 11e Kim EJ. Kang YK. Kim DY. Bull. Korean Chem. Soc.  2009,  30:  1437 
  • 11f Kang YK. Kim DY. J. Org. Chem.  2009,  74:  5734 
  • 11g Lee JH. Kim DY. Adv. Synth. Catal.  2009,  351:  1779 
  • 11h Lee JH. Kim DY. Synthesis  2010,  1860 
  • 12a Han X. Kwiatkowski J. Xue F. Huang K.-W. Lu Y. Angew. Chem. Int. Ed.  2009,  48:  7604 
  • 12b Jiang Z. Pan Y. Zhao Y. Ma T. Lee R. Yang Y. Huang K.-W. Wong MW. Tan C.-H. Angew. Chem. Int. Ed.  2009,  48:  3627 
  • 12c Pan Y. Zhao Y. Ma T. Yang Y. Liu H. Jiang Z. Tan C.-H. Chem. Eur. J.  2010,  16:  779 
  • 13a Kim DY. Huh SC. Kim SM. Tetrahedron Lett.  2001,  42:  6299 
  • 13b Kim DY. Huh SC. Tetrahedron  2001,  57:  8933 
  • 13c Park EJ. Kim MH. Kim DY.
    J. Org. Chem.  2004,  69:  6897 
  • 13d Kang YK. Kim DY. Tetrahedron Lett.  2006,  47: 4565
  • 13e Kang YK. Cho MJ. Kim SM. Kim DY. Synlett  2007,  1135 
  • 13f Cho MJ. Kang YK. Lee NR. Kim DY. Bull. Korean Chem. Soc.  2007,  28:  2191 
  • 13g Kim SM. Kang YK. Cho MJ. Mang JY. Kim DY. Bull. Korean Chem. Soc.  2007,  28:  2435 
  • 13h Lee JH. Bang HT. Kim DY. Synlett  2008,  1821 
  • 13i Mang JY. Kim DY. Bull. Korean Chem. Soc.  2008,  29:  2091 
  • 13j Kang YK. Kim DY. Bull. Korean Chem. Soc.  2008,  29:  2093 
  • 13k Kim DY. Bull. Korean Chem. Soc.  2008,  29:  2036 
  • 13l Mang JY. Kwon DG. Kim DY. Bull. Korean Chem. Soc.  2009,  30:  249 
  • 13m Kang YK. Kim SM. Kim DY. J. Am. Chem. Soc.  2010,  132:  11847 
  • 14a Kim SM. Lee JH. Kim DY. Synlett  2008,  2659 
  • 14b Jung SH. Kim DY. Tetrahedron Lett.  2008,  49:  5527 
15

Typical General Procedure for the Mannich-Type Reaction of α-Fluoro-β-keto Ester 1 with N -Boc Aldimine 2: To a solution of α-fluoro-β-keto ester 1 (0.3 mmol) and catalyst I (0.03 mmol, 20 mg) in Et2O (6 mL) was added N-Boc aldimine 2 (0.45 mmol). The reaction mixture was stirred for 24-36 h. The catalyst I was removed by short column chromatography (EtOAc-hexane, 1:5). The crude oil was purified by flash column chromatography (EtOAc-hexane, 1:7) to afford the Mannich adduct 3.
(2 S ,3 S )-Ethyl 2-Benzoyl-3-( tert -butoxycarbonylamino)-2-fluoro-3-(4-chlorophenyl)propanoate (3c): major diastereomer: [α]²6 D 7.0 (c = 1.0, CHCl3). ¹H NMR (200 MHz, CDCl3): δ = 1.28 (t, J = 13.9 Hz, 3 H), 1.39 (s, 9 H), 4.18-4.41 (m, 2 H), 5.45 (d, J = 10.4 Hz, 1 H), 5.87 (dd, J = 28.8, 10.4 Hz, 1 H), 7.35-7.44 (m, 5 H), 7.54-7.58 (m, 2 H), 7.80-7.84 (m, 2 H). ¹³C NMR (50 MHz, CDCl3): δ = 13.82, 28.15, 56.78 (d, J = 17.7 Hz), 63.32, 80.35, 102.01 (d, J = 204.4 Hz), 128.54, 129.56, 129.81, 130.24 (2), 134.01, 135.12, 154.30, 165.32 (d, J = 26.5 Hz), 190.33 (d, J = 25.7 Hz). HPLC (Chiralpak IA column; n-hexane-i-PrOH, 85:15; λ = 254 nm, flow rate: 0.5 mL/min); t R = 23.8 min (minor), t R = 28.1 min (major); 81% ee.
(2 S ,3 S )-Ethyl 2-Benzoyl-3-( tert -butoxycarbonylamino)-2-fluoro-3-propanoate (3d): major diastereomer: [α]²9 D 39.3 (c = 1.0, CHCl3). ¹H NMR (200 MHz, CDCl3): δ = 1.26 (t, J = 13.6 Hz, 3 H), 1.38 (s, 9 H), 4.16-4.39 (m, 2 H), 5.57 (d, J = 10.5 Hz, 1 H), 6.02 (dd, J = 28.8, 10.5 Hz, 1 H), 7.19-7.33 (m, 4 H), 7.36-7.51 (m, 4 H), 7.80-7.83 (m, 2 H). ¹³C NMR (50 MHz, CDCl3): δ = 13.75, 28.08, 57.38 (d, J = 18.5 Hz), 63.11, 79.97, 102.19 (d, J = 204.0 Hz), 128.01, 128.26, 128.34, 128.74, 129.28, 129.39, 133.69, 136.50, 154.31, 165.38 (d, J = 27.1 Hz), 190.80 (d, J = 25.6 Hz). HPLC (Chiralpak IA column; n-hexane-i-PrOH, 85:15; λ = 254 nm, flow rate: 0.5 mL/min); t R = 23.5 min (minor), t R = 31.0 min (major); 88% ee.
(2 S ,3 S )-Ethyl 2-Benzoyl-3-( tert -butoxycarbonylamino)-2-fluoro-3-(2-chlorophenyl)propanoate (3e): major diastereomer: [α]²8 D 55.5 (c = 1.0, CHCl3). ¹H NMR (200 MHz, CDCl3): δ = 1.28 (t, J = 12.1 Hz, 3 H), 1.39 (s, 9 H), 4.23-4.35 (m, 2 H), 5.55 (d, J = 10.1 Hz, 1 H), 6.47 (dd, J = 26.1, 10.1 Hz, 1 H), 7.10-7.18 (m, 2 H), 7.33-7.55 (m, 5 H), 7.87-7.91 (m, 2 H). ¹³C NMR (50 MHz, CDCl3): δ = 13.53, 27.88, 53.62 (d, J = 18.7 Hz), 63.02, 79.84, 101.30 (d, J = 205.4 Hz), 126.76, 128.30, 128.85, 129.09, 129.22, 129.85 (2), 133.71, 134.57, 134.97, 153.89, 165.15 (d, J = 26.7 Hz), 190.22 (d, J = 24.9 Hz). HPLC (Chiralpak IA column; n-hexane-i-PrOH, 85:15; λ = 254 nm, flow rate: 0.5 mL/min); t R = 30.4 min (minor), t R = 51.2 min (major); 86% ee.
(2 S ,3 S )-Ethyl 2-Benzoyl-3-( tert -butoxycarbonylamino)-2-fluoro-3-(furan)propanoate (3f): major diastereomer: [α]²8 D 35.3 (c = 1.0, CHCl3). ¹H NMR (200 MHz, CDCl3):
δ = 1.28 (t, J = 14.0 Hz, 3 H), 1.43 (s, 9 H), 4.18-4.38 (m, 2 H), 5.35 (d, J = 10.7 Hz, 1 H), 6.17 (dd, J = 28.2, 10.7 Hz, 1 H), 6.24-6.26 (m, 2 H), 7.27-7.29 (m, 1 H), 7.38-7.46 (m, 2 H), 7.53-7.60 (m, 1 H), 7.90-7.94 (m, 2 H). ¹³C NMR (50 MHz, CDCl3): δ = 13.79, 28.15, 52.07 (d, J = 19.7 Hz), 63.24, 80.33, 101.45 (d, J = 204.5 Hz), 108.84, 110.30, 128.51, 129.49, 129.61, 133.90, 142.37, 149.35, 154.32, 164.90 (d, J = 26.6 Hz), 190.39 (d, J = 25.2 Hz). HPLC (Chiralpak IA column; n-hexane-i-PrOH, 85:15; λ = 254 nm, flow rate: 0.5 mL/min); t R = 20.9 min (minor), t R = 34.5 min (major); 98% ee.
(2 S ,3 S )-Ethyl 2-Benzoyl-3-( tert -butoxycarbonylamino)-2-fluoro-3-(thiophene)propanoate (3g): major diastereomer: [α]²6 D 54.7 (c = 1.0, CHCl3). ¹H NMR (200 MHz, CDCl3): δ = 1.27 (t, J = 13.9 Hz, 3 H), 1.41 (s, 9 H), 4.17-4.40 (m, 2 H), 5.36 (d, J = 10.4 Hz, 1 H), 6.31 (dd, J = 28.3, 10.4 Hz, 1 H), 6.86-6.90 (m, 1 H), 7.06-7.08 (m, 1 H), 7.16-7.18 (m, 1 H), 7.36-7.44 (m, 2 H), 7.51-7.59 (m, 1 H), 7.89-7.93 (m, 2 H). ¹³C NMR (50 MHz, CDCl3): δ = 13.74, 28.10, 53.53 (d, J = 19.35 Hz), 63.12, 80.27, 101.92 (d, J = 204.2 Hz), 125.53, 126.56, 127.18, 128.46, 129.45, 129.56, 133.91, 138.75, 154.11, 164.96 (d, J = 26.9 Hz), 190.34 (d, J = 25.3 Hz). HPLC (Chiralpak IA column; n-hexane-i-PrOH, 90:10; λ = 254 nm, flow rate: 0.5 mL/min); t R = 30.9 min (minor), t R = 44.4 min (major); 95% ee.
(2 S ,3 S )-Ethyl 2-(4-Nitrobenzoyl)-3-( tert -butoxy-carbonylamino)-2-fluoro-3-(furan)propanoate (3h): major diastereomer: [α]³¹ D 19.7 (c = 1.0, CHCl3). ¹H NMR (200 MHz, CDCl3): δ = 1.31 (t, J = 14.4 Hz, 3 H), 1.44 (s, 9 H), 4.20-4.41 (m, 2 H), 5.36 (d, J = 10.2 Hz, 1 H), 6.15 (dd, J = 28.2, 10.2 Hz, 1 H), 6.27-6.31 (m, 2 H), 7.30 (m, 1 H), 8.01-8.06 (m, 2 H), 8.24-8.28 (m, 2 H). ¹³C NMR (50 MHz, CDCl3): δ = 13.83, 28.16, 52.21 (d, J = 19.3 Hz), 63.69, 80.67, 101.58 (d, J = 204.4 Hz), 109.13, 110.48, 123.62, 130.64, 138.59, 142.66, 148.90, 150.51, 154.30, 164.15 (d, J = 26.7 Hz), 189.96 (d, J = 25.7 Hz). HPLC (Chiralpak IA column; n-hexane-i-PrOH, 85:15; λ = 254 nm, flow rate: 0.5 mL/min); t R = 26.8 min (minor), t R = 45.6 min (major); 98% ee.
(2 S ,3 S )-Ethyl 2-[4-(Trifluoromethyl)phenyl]-3-( tert -butoxycarbonylamino)-2-fluoro-3-(furan)propanoate (3i): major diastereomer: [α]³0 D 26.0 (c = 1.0, CHCl3). ¹H NMR (200 MHz, CDCl3): δ = 1.30 (t, J = 14.5 Hz, 3 H), 1.44 (s, 9 H), 4.20-4.40 (m, 2 H), 5.35 (d, J = 10.5 Hz, 1 H), 6.17 (dd, J = 28.4, 10.5 Hz, 1 H), 6.25-6.27 (m, 2 H), 7.27-7.29 (m, 1 H), 7.67-7.71 (m, 2 H), 7.99-8.03 (m, 2 H). ¹³C NMR (50 MHz, CDCl3): δ = 13.79, 28.14, 52.14 (d, J = 19.2 Hz), 63.51, 80.53, 101.54 (d, J = 204.5 Hz), 109.01, 110.39, 123.35 (q, J = 271.5 Hz), 125.55, 129.80, 134.94 (q, J = 32.5 Hz), 136.66, 142.55, 149.07, 154.31, 164.42 (d, J = 26.6 Hz), 189.56 (d, J = 29.0 Hz). HPLC (Chiralpak IA column; n-hexane-i-PrOH, 85:15; λ = 254 nm, flow rate: 0.5 mL/min); t R = 15.7 min (minor), t R = 28.5 min (major); 96% ee.
(2 S ,3 S )-Ethyl 2-(4-Methoxybenzoyl)-3-( tert -butoxy-carbonylamino)-2-fluoro-3-(furan)propanoate (3j): major diastereomer: [α]³0 D 19.1 (c = 1.0, CHCl3). ¹H NMR (200 MHz, CDCl3): δ = 1.26 (t, J = 13.9 Hz, 3 H), 1.43 (s, 9 H), 3.84 (s, 3 H), 4.16-4.36 (m, 2 H), 5.36 (d, J = 10.5 Hz, 1 H), 6.16 (dd, J = 28.3, 10.5 Hz, 1 H), 6.23-6.25 (m, 2 H), 6.86-6.93 (m, 2 H), 7.79 (m, 1 H), 7.95-8.00 (m, 2 H). ¹³C NMR (50 MHz, CDCl3): δ = 13.74, 28.10, 51.96 (d, J = 19.5 Hz), 55.42, 63.06, 80.19, 101.50 (d, J = 204.4 Hz), 108.70, 110.24, 113.79, 126.60, 132.25, 142.22, 149.57, 154.31, 164.18, 165.20 (d, J = 26.9 Hz), 188.24 (d, J = 24.3 Hz). HPLC (Chiralpak IA column; n-hexane-i-PrOH, 85:15; λ = 254 nm, flow rate: 0.5 mL/min); t R = 26.6 min (minor), t R = 49.6 min (major); 96% ee.
(2 S ,3 S )-Ethyl 2-(4-Bromobenzoyl)-3-( tert -butoxy-carbonylamino)-2-fluoro-3-(furan)propanoate (3k): major diastereomer: [α]³¹ D 21.1 (c = 1.0, CHCl3). ¹H NMR (200 MHz, CDCl3): δ = 1.28 (t, J = 14.0 Hz, 3 H), 1.43 (s, 9 H), 4.19-4.37 (m, 2 H), 5.32 (d, J = 10.1 Hz, 1 H), 6.14 (dd, J = 28.4, 10.1 Hz, 1 H), 6.23-6.31 (m, 2 H), 7.27-7.29 (m, 1 H), 7.54-7.59 (m, 2 H), 7.78-7.81 (m, 2 H). ¹³C NMR (50 MHz, CDCl3): δ = 13.81, 28.16, 52.08 (d, J = 19.3 Hz), 63.40, 80.45, 101.51 (d, J = 204.1 Hz), 108.93, 110.36, 129.47, 131.00, 131.92, 132.48, 142.46, 149.22, 154.31, 164.68 (d, J = 27.9 Hz), 189.64 (d, J = 25.5 Hz). HPLC (Chiralpak IA column; n-hexane-i-PrOH, 90:10; λ = 254 nm, flow rate: 0.5 mL/min); t R = 24.7 min (minor), t R = 55.2 min (major); 98% ee.