References and Notes
<A NAME="RU11210ST-1">1</A>
Yamaguchi Y.
Masuma R.
Kim Y.-P.
Uchida R.
Tomoda H.
Omura S.
Mycoscience
2004,
45:
9
<A NAME="RU11210ST-2">2</A>
Uchida R.
Tomoda H.
Omura S.
J.
Antibiot.
2006,
59:
298
<A NAME="RU11210ST-3">3</A>
Uchida R.
Kim Y.-P.
Namatame I.
Tomoda H.
Omura S.
J.
Antibiot.
2006,
59:
93
<A NAME="RU11210ST-4">4</A>
Uchida R.
Kim Y.-P.
Nagamitsu T.
Tomoda H.
Omura S.
J.
Antibiot.
2006,
59:
338
For recent synthetic studies on
indole diterpenes, see:
<A NAME="RU11210ST-5A">5a</A>
Smith AB.
Davulcu AH.
Cho YS.
Ohmoto K.
Kürti L.
Ishiyama H.
J.
Org. Chem.
2007,
72:
4596
<A NAME="RU11210ST-5B">5b</A>
Smith AB.
Kürti L.
Davulcu AH.
Cho YS.
Ohmoto K.
J. Org. Chem.
2007,
72:
4611 ; and references therein
<A NAME="RU11210ST-5C">5c</A>
Churruca F.
Fousteris M.
Ishikawa Y.
Rekowski MW.
Hounsou C.
Surrey T.
Gainnis A.
Org. Lett.
2010,
12:
2096
<A NAME="RU11210ST-5D">5d</A>
Enomoto M.
Kuwahara S.
J. Org. Chem.
2010,
75:
6286
For reviews of indole synthesis,
see:
<A NAME="RU11210ST-6A">6a</A>
Cacchi S.
Fabrizi G.
Chem. Rev.
2005,
105:
2873
<A NAME="RU11210ST-6B">6b</A>
Humphrey GR.
Kuethe JT.
Chem.
Rev.
2006,
106:
2875
<A NAME="RU11210ST-6C">6c</A>
Krüger K.
Tillack A.
Beller M.
Adv. Synth. Catal.
2008,
350:
2153
<A NAME="RU11210ST-6D">6d</A>
Barluenga J.
Rodríguez F.
Fañanás FJ.
Chem. Asian J.
2009,
4:
1036
<A NAME="RU11210ST-7A">7a</A>
Nedelec L.
Gasc JC.
Bucourt R.
Tetrahedron
1974,
30:
3263
<A NAME="RU11210ST-7B">7b</A>
Arséniyadis S.
Rodriguez R.
Cabrera E.
Thompson A.
Ourisson G.
Tetrahedron
1991,
47:
7045
<A NAME="RU11210ST-7C">7c</A>
Ciceri P.
Demnitz FWJ.
Tetrahedron
Lett.
1997,
38:
389
<A NAME="RU11210ST-8">8</A>
All new compounds were fully characterized
by ¹H NMR, ¹³C
NMR, and IR analyses.
Data for Selected
Compounds
Alcohol 12: IR
(film): νmax = 3362, 2954, 2856, 1635,
1472, 1253, 1063, 835 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 0.04 (3 H,
s, CH3 of TBS), 0.05 (3 H, s, CH3 of TBS),
0.24 (9 H, s, CH3 of TMS), 0.88 (9 H, s, CH3 of t-Bu), 1.02 (3 H, s, CCH
3axCH3eq),
1.02 (3H, s, CCH3axCH
3eq),
1.04 (3 H, s, CCH3), 1.29 [3 H, s, C(CH2OH)CH
3], 1.29 (1 H, dt, J = 12.0, 3.5
Hz, CHbHcCHd
H
e),
1.55-1.63 (2 H, m, CHaCH
b
H
c), 1.77 (1 H, ddd, J = 14.0,
6.5, 4.5 Hz, CHhHiCH
jHk),
1.82 (1 H, ddd, J = 14.0,
10.0, 6.0 Hz, CHhHiCHj
H
k), 2.09 (1 H, ddd, J = 13.0,
10.0, 8.0 Hz, CHbHcCH
dHe),
2.22 (1 H, dddd, J = 13.5,
6.0, 4.5, 1.0 Hz, CHh
H
iCHjHk),
2.46 (1 H, dddt, J = 13.5,
10.0, 6.5, 1.0 Hz, CH
hHiCHjHk),
3.57 (1 H, br d, J = 11.0
Hz, CH
xHyOH), 3.68
(1 H, d, J = 11.0
Hz, CHx
H
yOH), 3.77
(1 H, dd, J = 9.5,
7.0 Hz, TBSOCHa), 4.71 (1 H, br s, H
mHnC=C),
4.89 (1 H, br s, Hm
H
nC=C). ¹³C
NMR (100 MHz, CDCl3): δ = -4.7, -3.8,
4.5, 18.1, 19.2, 20.2, 22.7, 25.9, 26.1, 27.6, 28.4, 28.7, 29.9,
46.2, 46.5, 48.4, 68.0, 74.1, 88.9, 108.4, 152.6. ESI-HRMS: m/z calcd for C25H50O3Si2Na [M + Na]:
477.3191; found: 477.3202.
Alcohol 2:
IR (film): νmax = 3311, 2955, 2103,
1253, 1097, 1006, 836 cm-¹. ¹H
NMR (600 MHz, CDCl3): δ = 0.03 (3 H, s,
CH3 of TBS) 0.04 (3 H, s, CH3 of TBS), 0.21
(9 H, s, CH3 of TMS), 0.87 (9 H, s, CH3 of t-Bu), 0.95 (3 H, s, CCH3CH
3), 1.00 (3 H, s, CCH
3CH3), 1.26 (3
H, s, CCH3), 1.33 (1 H, dt, J = 13.0,
3.5 Hz, CHbHcCHd
H
e),
1.35 (1 H, td, J = 13.5,
4.0 Hz, CHgCH
hHi),
1.41 (3 H, s, CCH3), 1.60-1.69 (3 H, m, CHaCH
b
H
c,
CHhHiCH
jHk),
1.72 (1 H, dq, J = 13.5,
3.5 Hz, CHgCHh
H
i),
1.81 (1 H, td, J = 14.0,
4.0 Hz, CHhHiCHj
H
k), 2.05
(1 H, td, J = 13.0,
5.0 Hz, CHbHcCH
dHe),
2.08 (1 H, tt, J = 12.5,
4.0 Hz, HOCH2CH
g),
2.20 (1 H, s, CºCH), 3.41 (1 H, br s,
HOCH
xHyCHg),
3.75 (1 H, dd, J = 11.0,
6.0 Hz, TBSOCHa), 4.03 (1 H, dd, J = 10.5,
5.0 Hz, HOCHx
H
yCHg). ¹³C
NMR (100 MHz, CDCl3): δ = -4.7, -3.7,
4.5, 18.0, 19.9, 21.4, 21.5, 22.4, 25.1, 25.8, 26.0, 26.3, 28.5,
42.9, 44.6, 45.1, 46.2, 66.0, 71.2, 73.9, 87.5, 92.7. ESI-HRMS: m/z calcd for C26H50O3Si2Na [M + Na]:
489.3191; found: 489.3210.
<A NAME="RU11210ST-9">9</A>
Nakamura T.
Tsuboi K.
Oshida M.
Nomura T.
Nakazaki A.
Kobayashi S.
Tetrahedron Lett.
2009,
50:
2835
<A NAME="RU11210ST-10">10</A>
Winkler JD.
Subrahmanyam D.
Tetrahedron
1992,
48:
7049
<A NAME="RU11210ST-11">11</A>
Hashimoto S.
Ban M.
Yanagiya Y.
Sakata S.
Ikegami S.
Tetrahedron
Lett.
1991,
32:
4027
<A NAME="RU11210ST-12">12</A>
Nagata W.
Yoshioka M.
Hirai S.
J.
Am. Chem. Soc.
1972,
94:
4635
<A NAME="RU11210ST-13">13</A>
Bhagwat SS.
Gude C.
Cohen DS.
Lee W.
Furness P.
Clarke FH.
J. Med. Chem.
1991,
34:
1790
<A NAME="RU11210ST-14">14</A>
Zammit SC.
Ferro V.
Hammond E.
Rizzacasa MA.
Org. Biomol. Chem.
2007,
5:
2826
<A NAME="RU11210ST-15">15</A>
Organocopper Reagents: A Practical Approach
Taylor
RJK.
Oxford
University Press;
Oxford:
1994.
<A NAME="RU11210ST-16">16</A>
Relevant 1,4-addition of α,β-unsaturated
ketone, derived from 3 (vide supra) with
Me2CuLi, was also examined; however, only 1,2-addition
product was obtained. Therefore we concluded that this sort of α,β-unsaturated
carbonyl compounds would be unreactive due to their steric hindrance.
<A NAME="RU11210ST-17">17</A>
Mori K.
Amaike M.
Itou M.
Tetrahedron
1993,
49:
1871
<A NAME="RU11210ST-18A">18a</A>
Ohira S.
Synth. Commun.
1989,
19:
561
<A NAME="RU11210ST-18B">18b</A>
Müller S.
Liepold B.
Roth GJ.
Bestmann HJ.
Synlett
1996,
521
<A NAME="RU11210ST-18C">18c</A>
Marshall JA.
Johns BA.
J.
Org. Chem.
2000,
65:
1501
<A NAME="RU11210ST-19A">19a</A>
Corey EJ.
Fuchs PL.
Tetrahedron
Lett.
1972,
13:
3769
<A NAME="RU11210ST-19B">19b</A>
Armstrong A.
Bhonoah Y.
Shanahan SE.
J.
Org. Chem.
2007,
72:
8019
<A NAME="RU11210ST-20A">20a</A>
Seyferth D.
Grim SO.
Read TO.
J. Am. Chem. Soc.
1961,
83:
1617
<A NAME="RU11210ST-20B">20b</A>
Frye LL.
Robinson CH.
J.
Org. Chem.
1990,
55:
1579
<A NAME="RU11210ST-21A">21a</A>
RajanBabu TV.
Nugent WA.
Beattie MS.
J.
Am. Chem. Soc.
1990,
112:
6408
<A NAME="RU11210ST-21B">21b</A>
RajanBabu TV.
Nugent WA.
J.
Am. Chem. Soc.
1994,
116:
986
<A NAME="RU11210ST-22A">22a</A>
Cuerva JM.
Campaña AG.
Justicia J.
Rosales A.
Oller-López JL.
Robles R.
Cárdenas DJ.
Buñuel E.
Oltra JE.
Angew. Chem. Int. Ed.
2006,
45:
5522
<A NAME="RU11210ST-22B">22b</A>
Jiménez T.
Campaña AG.
Bazdi B.
Paradas M.
Arráez-Román D.
Segura-Carretero A.
Fernández-Gutiérrez A.
Oltra JE.
Robles R.
Justicia J.
Cuerva
JM.
Eur. J. Org. Chem.
2010,
4288
For isomerization of spiro epoxide
into aldehyde using Cp2TiCl2/Mn,
see:
<A NAME="RU11210ST-23A">23a</A>
Schobert R.
Höhlein U.
Synlett
1990,
465
<A NAME="RU11210ST-23B">23b</A>
Bhaskar KV.
Mander LN.
Tetrahedron Lett.
1996,
37:
719
<A NAME="RU11210ST-24">24</A>
This reaction did not proceed with
Cp2TiCl2 as a Lewis acid. When the Lewis acid
such as MgBr2˙OEt2, BF3˙OEt2,
or AlCl3 was used for this conversion, the reaction provide lower
yield of the desired aldehyde.
<A NAME="RU11210ST-25">25</A> Related reaction for the formation
of allylic alcohol from spiro epoxide was reported:
Justicia J.
Oltra JE.
Barrero AF.
Guadaño A.
González-Coloma A.
Cuerva JM.
Eur. J. Org. Chem.
2005,
712