Subscribe to RSS
DOI: 10.1055/s-0030-1259551
Synthetic Study on Sespendole, an Indole Sesquiterpene Alkaloid: Stereocontrolled Synthesis of the Sesquiterpene Segment Bearing All Requisite Stereogenic Centers
Publication History
Publication Date:
11 February 2011 (online)
Abstract
Stereocontrolled synthesis of a sesquiterpene segment with all requisite stereogenic centers for sespendole has been achieved. Synthetic features of our strategy involve (1) highly stereoselective [2,3]-Wittig rearrangement to obtain sterically congested quaternary carbon and (2) isomerization of a spiro epoxide into aldehyde with Cp2TiCl2/Mn in a highly stereoselective manner.
Key words
natural product synthesis - sespendole - indole sesquiterpene - [2,3]-Wittig rearrangement - isomerization
- 1
Yamaguchi Y.Masuma R.Kim Y.-P.Uchida R.Tomoda H.Omura S. Mycoscience 2004, 45: 9 - 2
Uchida R.Tomoda H.Omura S. J. Antibiot. 2006, 59: 298 - 3
Uchida R.Kim Y.-P.Namatame I.Tomoda H.Omura S. J. Antibiot. 2006, 59: 93 - 4
Uchida R.Kim Y.-P.Nagamitsu T.Tomoda H.Omura S. J. Antibiot. 2006, 59: 338 - For recent synthetic studies on indole diterpenes, see:
-
5a
Smith AB.Davulcu AH.Cho YS.Ohmoto K.Kürti L.Ishiyama H. J. Org. Chem. 2007, 72: 4596 -
5b
Smith AB.Kürti L.Davulcu AH.Cho YS.Ohmoto K. J. Org. Chem. 2007, 72: 4611 ; and references therein -
5c
Churruca F.Fousteris M.Ishikawa Y.Rekowski MW.Hounsou C.Surrey T.Gainnis A. Org. Lett. 2010, 12: 2096 -
5d
Enomoto M.Kuwahara S. J. Org. Chem. 2010, 75: 6286 - For reviews of indole synthesis, see:
-
6a
Cacchi S.Fabrizi G. Chem. Rev. 2005, 105: 2873 -
6b
Humphrey GR.Kuethe JT. Chem. Rev. 2006, 106: 2875 -
6c
Krüger K.Tillack A.Beller M. Adv. Synth. Catal. 2008, 350: 2153 -
6d
Barluenga J.Rodríguez F.Fañanás FJ. Chem. Asian J. 2009, 4: 1036 -
7a
Nedelec L.Gasc JC.Bucourt R. Tetrahedron 1974, 30: 3263 -
7b
Arséniyadis S.Rodriguez R.Cabrera E.Thompson A.Ourisson G. Tetrahedron 1991, 47: 7045 -
7c
Ciceri P.Demnitz FWJ. Tetrahedron Lett. 1997, 38: 389 - 9
Nakamura T.Tsuboi K.Oshida M.Nomura T.Nakazaki A.Kobayashi S. Tetrahedron Lett. 2009, 50: 2835 - 10
Winkler JD.Subrahmanyam D. Tetrahedron 1992, 48: 7049 - 11
Hashimoto S.Ban M.Yanagiya Y.Sakata S.Ikegami S. Tetrahedron Lett. 1991, 32: 4027 - 12
Nagata W.Yoshioka M.Hirai S. J. Am. Chem. Soc. 1972, 94: 4635 - 13
Bhagwat SS.Gude C.Cohen DS.Lee W.Furness P.Clarke FH. J. Med. Chem. 1991, 34: 1790 - 14
Zammit SC.Ferro V.Hammond E.Rizzacasa MA. Org. Biomol. Chem. 2007, 5: 2826 - 15
Organocopper Reagents: A Practical Approach
Taylor RJK. Oxford University Press; Oxford: 1994. - 17
Mori K.Amaike M.Itou M. Tetrahedron 1993, 49: 1871 -
18a
Ohira S. Synth. Commun. 1989, 19: 561 -
18b
Müller S.Liepold B.Roth GJ.Bestmann HJ. Synlett 1996, 521 -
18c
Marshall JA.Johns BA. J. Org. Chem. 2000, 65: 1501 -
19a
Corey EJ.Fuchs PL. Tetrahedron Lett. 1972, 13: 3769 -
19b
Armstrong A.Bhonoah Y.Shanahan SE.
J. Org. Chem. 2007, 72: 8019 -
20a
Seyferth D.Grim SO.Read TO. J. Am. Chem. Soc. 1961, 83: 1617 -
20b
Frye LL.Robinson CH. J. Org. Chem. 1990, 55: 1579 -
21a
RajanBabu TV.Nugent WA.Beattie MS. J. Am. Chem. Soc. 1990, 112: 6408 -
21b
RajanBabu TV.Nugent WA. J. Am. Chem. Soc. 1994, 116: 986 -
22a
Cuerva JM.Campaña AG.Justicia J.Rosales A.Oller-López JL.Robles R.Cárdenas DJ.Buñuel E.Oltra JE. Angew. Chem. Int. Ed. 2006, 45: 5522 -
22b
Jiménez T.Campaña AG.Bazdi B.Paradas M.Arráez-Román D.Segura-Carretero A.Fernández-Gutiérrez A.Oltra JE.Robles R.Justicia J.Cuerva JM. Eur. J. Org. Chem. 2010, 4288 - For isomerization of spiro epoxide into aldehyde using Cp2TiCl2/Mn, see:
-
23a
Schobert R.Höhlein U. Synlett 1990, 465 -
23b
Bhaskar KV.Mander LN. Tetrahedron Lett. 1996, 37: 719 - 25 Related reaction for the formation
of allylic alcohol from spiro epoxide was reported:
Justicia J.Oltra JE.Barrero AF.Guadaño A.González-Coloma A.Cuerva JM. Eur. J. Org. Chem. 2005, 712
References and Notes
All new compounds were fully characterized
by ¹H NMR, ¹³C
NMR, and IR analyses.
Data for Selected
Compounds
Alcohol 12: IR
(film): νmax = 3362, 2954, 2856, 1635,
1472, 1253, 1063, 835 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 0.04 (3 H,
s, CH3 of TBS), 0.05 (3 H, s, CH3 of TBS),
0.24 (9 H, s, CH3 of TMS), 0.88 (9 H, s, CH3 of t-Bu), 1.02 (3 H, s, CCH
3axCH3eq),
1.02 (3H, s, CCH3axCH
3eq),
1.04 (3 H, s, CCH3), 1.29 [3 H, s, C(CH2OH)CH
3], 1.29 (1 H, dt, J = 12.0, 3.5
Hz, CHbHcCHd
H
e),
1.55-1.63 (2 H, m, CHaCH
b
H
c), 1.77 (1 H, ddd, J = 14.0,
6.5, 4.5 Hz, CHhHiCH
jHk),
1.82 (1 H, ddd, J = 14.0,
10.0, 6.0 Hz, CHhHiCHj
H
k), 2.09 (1 H, ddd, J = 13.0,
10.0, 8.0 Hz, CHbHcCH
dHe),
2.22 (1 H, dddd, J = 13.5,
6.0, 4.5, 1.0 Hz, CHh
H
iCHjHk),
2.46 (1 H, dddt, J = 13.5,
10.0, 6.5, 1.0 Hz, CH
hHiCHjHk),
3.57 (1 H, br d, J = 11.0
Hz, CH
xHyOH), 3.68
(1 H, d, J = 11.0
Hz, CHx
H
yOH), 3.77
(1 H, dd, J = 9.5,
7.0 Hz, TBSOCHa), 4.71 (1 H, br s, H
mHnC=C),
4.89 (1 H, br s, Hm
H
nC=C). ¹³C
NMR (100 MHz, CDCl3): δ = -4.7, -3.8,
4.5, 18.1, 19.2, 20.2, 22.7, 25.9, 26.1, 27.6, 28.4, 28.7, 29.9,
46.2, 46.5, 48.4, 68.0, 74.1, 88.9, 108.4, 152.6. ESI-HRMS: m/z calcd for C25H50O3Si2Na [M + Na]:
477.3191; found: 477.3202.
Alcohol 2:
IR (film): νmax = 3311, 2955, 2103,
1253, 1097, 1006, 836 cm-¹. ¹H
NMR (600 MHz, CDCl3): δ = 0.03 (3 H, s,
CH3 of TBS) 0.04 (3 H, s, CH3 of TBS), 0.21
(9 H, s, CH3 of TMS), 0.87 (9 H, s, CH3 of t-Bu), 0.95 (3 H, s, CCH3CH
3), 1.00 (3 H, s, CCH
3CH3), 1.26 (3
H, s, CCH3), 1.33 (1 H, dt, J = 13.0,
3.5 Hz, CHbHcCHd
H
e),
1.35 (1 H, td, J = 13.5,
4.0 Hz, CHgCH
hHi),
1.41 (3 H, s, CCH3), 1.60-1.69 (3 H, m, CHaCH
b
H
c,
CHhHiCH
jHk),
1.72 (1 H, dq, J = 13.5,
3.5 Hz, CHgCHh
H
i),
1.81 (1 H, td, J = 14.0,
4.0 Hz, CHhHiCHj
H
k), 2.05
(1 H, td, J = 13.0,
5.0 Hz, CHbHcCH
dHe),
2.08 (1 H, tt, J = 12.5,
4.0 Hz, HOCH2CH
g),
2.20 (1 H, s, CºCH), 3.41 (1 H, br s,
HOCH
xHyCHg),
3.75 (1 H, dd, J = 11.0,
6.0 Hz, TBSOCHa), 4.03 (1 H, dd, J = 10.5,
5.0 Hz, HOCHx
H
yCHg). ¹³C
NMR (100 MHz, CDCl3): δ = -4.7, -3.7,
4.5, 18.0, 19.9, 21.4, 21.5, 22.4, 25.1, 25.8, 26.0, 26.3, 28.5,
42.9, 44.6, 45.1, 46.2, 66.0, 71.2, 73.9, 87.5, 92.7. ESI-HRMS: m/z calcd for C26H50O3Si2Na [M + Na]:
489.3191; found: 489.3210.
Relevant 1,4-addition of α,β-unsaturated ketone, derived from 3 (vide supra) with Me2CuLi, was also examined; however, only 1,2-addition product was obtained. Therefore we concluded that this sort of α,β-unsaturated carbonyl compounds would be unreactive due to their steric hindrance.
24This reaction did not proceed with Cp2TiCl2 as a Lewis acid. When the Lewis acid such as MgBr2˙OEt2, BF3˙OEt2, or AlCl3 was used for this conversion, the reaction provide lower yield of the desired aldehyde.