Subscribe to RSS
DOI: 10.1055/s-0030-1259719
An Efficient Approach to Alkenyl Nitriles from Allyl Esters
Publication History
Publication Date:
10 March 2011 (online)
![](https://www.thieme-connect.de/media/synlett/201107/lookinside/thumbnails/10.1055-s-0030-1259719-1.jpg)
Abstract
A novel and efficient approach to alkenyl nitriles from allyl esters has been developed. A tandem Pd-catalyzed substitution and the subsequent oxidative rearrangement are involved in this transformation. The method provides an important supplement for the synthesis of alkenyl nitriles from allyl esters.
Key words
alkenyl nitriles - allyl esters - allyl azides - oxidative rearrangement
- Supporting Information for this article is available online:
- Supporting Information
-
1a
Smith MB.March J. March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 6th ed.: Wiley; Hoboken: 2007. -
1b
Fleming FF.Wang Q. Chem. Rev. 2003, 103: 2035 -
1c
Miller JS.Manson JL. Acc. Chem. Res. 2001, 34: 563 -
1d
Magnus PD.Scott A.Fielding MR. Tetrahedron Lett. 2001, 42: 4127 -
1e
Fatiadi AJ. In Preparation and Synthetic Applications of Cyano CompoundsPatai S.Rappaport Z. Wiley; New York: 1983. -
2a
Basavaiah D.Jaganmohan Rao A.Satyanarayana T. Chem. Rev. 2003, 103: 811 -
2b
Antonioletti R.Bonadies F.Ciammaichella A.Viglianti A. Tetrahedron 2008, 64: 4644 -
2c
Zhang TY.O’Toole JC.Dunigan JM. Tetrahedron Lett. 1998, 39: 1461 -
2d
Kojima S.Kawaguchi K.Matsukawa S.Uchida K.Akiba K. Chem. Lett. 2002, 170 -
2e
Kojima S.Fukuzaki T.Yamakawa A.Murai Y. Org. Lett. 2004, 6: 3917 -
2f
Yamakado Y.Ishigoro M.Ikeda N.Yamamoto H.
J. Am. Chem. Soc. 1981, 103: 5568 -
2g
Crowe WE.Goldberg DR. J. Am. Chem. Soc. 1995, 117: 5162 -
2h
Peppe C.de Azevedo Mello P.das Chagas RP.
J. Organomet. Chem. 2006, 691: 2335 -
2i
Tomioka T.Takahashi Y.Vaughan TG.Yanase T. Org. Lett. 2010, 12: 2171 - This carbon-carbon bond also can be constructed by the carbocyanation of alkynes, see:
-
3a
Nakao Y.Oda S.Hiyama T. J. Am. Chem. Soc. 2004, 126: 13904 -
3b
Nakao Y.Yukawa T.Hirata Y.Oda S.Satoh J.Hiyama T. J. Am. Chem. Soc. 2006, 128: 7116 -
3c
Nakao Y.Yada A.Ebata S.Hiyama T. J. Am. Chem. Soc. 2007, 129: 2428 -
4a
Li L.-H.Pan Z.-L.Duan X.-H.Liang Y.-M. Synlett 2006, 2094 -
4b
Alterman M.Hallberg A. J. Org. Chem. 2000, 65: 7984 -
4c
Moreno-Mañas M.Pleixats R.Roglans A. Synlett 1997, 1157 -
4d
Masllorens J.Moreno-Mañas M.Pla-Quintana A.Pleixats R.Roglans A. Synthesis 2002, 1903 -
5a
Oishi T.Yamaguchi K.Mizuno N. Angew. Chem. Int. Ed. 2009, 48: 6286 -
5b
Telvekar VN.Patel KN.Kundaikar HS.Chaudhari HK. Tetrahedron Lett. 2008, 49: 2213 -
5c
Iida S.Togo H. Tetrahedron 2007, 63: 8274 -
5d
Arote ND.Bhalerao DS.Akamanchi KG. Tetrahedron Lett. 2007, 48: 3651 -
6a
Lohaus G. Org. Synth. 1970, 50: 18 -
6b
Vorbrueggen H. Tetrahedron Lett. 1968, 9: 1631 -
7a
Liguori A.Sindona G.Romeo G.Uccella N. Synthesis 1987, 168 -
7b
Wood JL.Khatri NA.Weinreb SM. Tetrahedron Lett. 1979, 4907 -
8a
Ishihara K.Furuya Y.Yamamoto H. Angew. Chem. Int. Ed. 2002, 41: 2983 -
8b
Kuo C.-W.Zhu J.-L.Wu J.-D.Chu C.-M.Yao C.-F.Shia K.-S. Chem. Commun. 2007, 301 -
8c
Zhou S.Addis D.Das S.Junge K.Beller M. Chem. Commun. 2009, 4883 -
9a
Yamaguchi K.Fujiwara H.Ogasawara Y.Kotani M.Mizuno N. Angew. Chem. Int. Ed. 2007, 46: 3922 -
9b
Yadav LDS.Srivastava VP.Patel R. Tetrahedron Lett. 2009, 50: 5532 -
9c
Singh MK.Lakshman MK.
J. Org. Chem. 2009, 74: 3079 -
9d
Saha D.Saha A.Ranu BC. Tetrahedron Lett. 2009, 50: 6088 -
10a
Rudler H.Denis B. Chem. Commun. 1998, 2145 -
10b
Altamura A.Daccolti L.Detomaso A.Dinoi A.Fiorentino M.Fusco C.Curci R. Tetrahedron Lett. 1998, 39: 2009 -
10c
Fernandez R.Gasch C.Lassaletta JM.Llera JM.Vazquez J. Tetrahedron Lett. 1993, 34: 141 -
11a
Zhou W.Zhang L.Jiao N. Angew. Chem. Int. Ed. 2009, 48: 7094 -
11b
Zhou W.Xu J.Zhang L.Jiao N. Org. Lett. 2010, 12: 2888 -
11c
Qin C.Jiao N. J. Am. Chem. Soc. 2010, 132: 15893 -
12a
Trost BM.Crawley ML. Chem. Rev. 2003, 103: 2921 -
12b
Tsuji J. In Handbook of Organopalladium Chemistry for Organic SynthesisNegishi E.-I.de Meijere A. John Wiley and Sons; New York: 2002. p.1669 -
12c
Trost BM.Fandrick DR. Aldrichimica Acta 2007, 40: 59 -
12d
Trost BM.Machacek MR.Aponick A. Acc. Chem. Res. 2006, 39: 747 -
12e
Trost BM.Van Vranken DL. Chem. Rev. 1996, 96: 395 -
12f
Lamblin M.Nassar-Hardy L.Hierso J.-C.Fouquet E.Felpin F.-X. Adv. Synth. Catal. 2010, 352: 33 -
12g
Murahashi S.Tanigawa Y.Imada Y.Taniguchi Y. Tetrahedron Lett. 1986, 27: 227 - For Pd-catalyzed allylic substitution reactions with TMSN3, see:
-
13a
Safi M.Fahrang R.Sinou D. Tetrahedron Lett. 1990, 31: 527 -
13b
Murahashi S.Taniguchi Y.Imada Y.Tanigawa Y. J. Org. Chem. 1989, 54: 3292 -
13c
Chang H.-M.Cheng C.-H. J. Chem. Soc., Perkin Trans. 1 2000, 22: 3799 -
13d
Gyoung Y.Shim J.-G.Yamamoto Y. Tetrahedron Lett. 2000, 41: 4193 -
15a
Li C.-J. Acc. Chem. Res. 2009, 42: 335 -
15b
Buckle DR. Encyclopaedia of Reagent for Organic Synthesis Vol. 3:Paquette LA. John Wiley and Sons; Chichester: 1995. p.1699 -
15c
Walker D.Hiebert JD. Chem. Rev. 1967, 67: 153 -
15d
Li Y.-Z.Li B.-J.Lu X.-Y.Lin S.Shi Z.-J. Angew. Chem. Int. Ed. 2009, 48: 3817 -
15e
Zhang Y.Li C.-J. Angew. Chem. Int. Ed. 2006, 45: 1949 -
15f
Zhang Y.Li C.-J. J. Am. Chem. Soc. 2006, 128: 4242 -
16a
Lang S.Murphy JA. Chem. Soc. Rev. 2006, 35: 146 -
16b
Sprecher M.Kost D. J. Am. Chem. Soc. 1994, 116: 1016 -
16c
Katz CE.Aubé J. J. Am. Chem. Soc. 2003, 125: 13948 -
16d
Gorin DJ.Davis NR.Toste FD. J. Am. Chem. Soc. 2005, 127: 11260 -
16e
Yao L.Aubé J. J. Am. Chem. Soc. 2007, 129: 2766 -
16f
Lamani M.Prabhu KR. Angew. Chem. Int. Ed. 2010, 49: 6622 - Other methods for the synthesis of nitriles from azide compunds:
-
17a
Hernández R.Leõn EI.Moreno P.Suárez E. J. Org. Chem. 1997, 62: 8974 -
17b
Sasson R.Rozen S. Org. Lett. 2005, 7: 2177 -
17c
Chiba S.Zhang L.Ang GY.Hui BW.-Q. Org. Lett. 2010, 12: 2052 - 18
Richard JP.Amyes TL.Lee YG.Jagannadham V. J. Am. Chem. Soc. 1994, 116: 10833
References and Notes
Typical Experimental
Procedure for the Synthesis of Alkenenitriles 2 from Allyl Esters
An
oven-dried Schlenk tube was charge with allyl esters (0.5 mmol),
TMSN3 (0.75 mmol), Pd(PPh3)4 (0.025
mmol), and DCE (2 mL) under N2. The tube was evacuated
and refilled with N2 at -40 ˚C
for three times. The mixture was stirred under reflux for 1 h. Then,
sulfur (0.1 mmol) and DDQ (0.75 mmol) were added subsequently and
carefully under N2 atmosphere (Caution! N2 emitted
violently). The mixture was stirred under reflux for proper time
monitored by TLC, followed by subsequent workup as above. The reaction
was cooled down to r.t. After removal of the solvent, the residue was
purified by flash chromatography on silica gel (EtOAc-PE,
1:20) to obtain the desired products 2.