Subscribe to RSS
DOI: 10.1055/s-0030-1259910
Novel Synthesis of 1,4-Dialkoxy-5,6,7,8-multisubstituted-2,3-dicyanonaphthalenes through Electron Transfer from Mg Metal and Efficient Development of New Naphthalocyanines
Publication History
Publication Date:
15 March 2011 (online)
![](https://www.thieme-connect.de/media/synlett/201106/lookinside/thumbnails/10.1055-s-0030-1259910-1.jpg)
Abstract
Novel methods for efficient synthesis of 1,4-diamyloxy-5,6,7,8-multisubstituted-2,3-dicyanonaphthalenes were successfully developed, starting from easily available 2,3-dicyanohydroquinone as a common single compound through only three steps, the first dibromination of 2,3-dicyanohydroquinone, the second Mitsunobu dialkylation of 2,3-dicyano-5,6-diboromo-1,4-hydroquinone, and the last Diels-Alder-type of cycloaddition between 1,4-alkoxy-2,3-dicyano-5,6-diboromobenzenes and multisubstituted furans, followed by reductive deoxygenation with Mg turning. The obtained 1,4-diamyloxy-5,6,7,8-multisubstituted-2,3-dicyanonaphthalenes were easily transformed into the corresponding naphthalocyanines in 20-45% yields which showed their λmax at 867-892 nm.
Key words
multisubstituted-2,3-dicyanonaphthalenes - Mg metal naphthalocyanines - benzyne - νmax at 867-892 nm
-
1a
Wagner HJ.Loutfly RO.Hsiao CK. J. Mater. Sci. 1982, 17: 2281 -
1b
Moser FH.Thomas AL. The Phthalocyanines Vol. 1: CRC Press; Boca Raton / FL: 1983. -
1c
Schichiri T.Suezaki M.Inoue T. Chem.Lett. 1992, 1717 -
1d
Shirai O.Kobayashi T. Phthalocyanines - Chemistry and Functions IPC Publisher; Tokyo: 1997. -
2a
Liljeroth P.Lepp J.Meyer G. Science 2007, 317: 1203 -
2b
Nakamura Y.Katagiri Y.Tonomoto Y. Technical Reports of Fuji Xerox Co. Ltd. 2006, 16: 20 -
2c . inventors; JP 211174.
-
3a . inventors; JP 78307.
-
3b . inventors; JP-A-67826.
-
3c
Shirai O. inventors; JP-A- 118273. - 5
Nakamori T.Chiba T.Kasai T. Nippon Kagaku Zasshi 1981, 12: 1916 - Recent studies on Mitsunobu Reaction, see:
-
6a
Anne-Sophie F.Sebastien D.Jacques B.Regis V.Claude D.Axelle A.Brigitte J. Tetrahedron 2008, 64: 10741 -
6b
Wang G.Ella-Menye J.-R.St. Martin M.Yang H.Williams K. Org. Lett. 2008, 10: 4203 -
6c
Vintonyak VV.Kunze B.Sasse F.Maier ME. Chem. Eur. J. 2008, 14: 11132 - 7
Cook MJ.Heeney MJ. Chem. Eur. J. 2000, 21: 39587 -
8a
Forgione P.Wilson PD.Fallis AG. Tetrahedron Lett. 2000, 41: 17 -
8b
Yoshina S.Yamamoto K. Yakugaku Zasshi 1974, 94: 1312 -
8c
Nakano M.Tsurugi H.Satoh T.Miura M. Org. Lett. 2008, 10: 1851 -
8d
Li ZF.Zheng YM.Liu YK. J. Indian Chem. Soc. 2002, 79: 188 -
9a
Berson JA.Swidler R. J. Am. Chem. Soc. 1953, 75: 1721 -
9b
Morton GE.Barrett AGM. J. Org. Chem. 2005, 70: 3525 -
9c
Biland-Thommen AS.Raju GS.Blagg J.Whitea AJP.Barretta AGM. Tetrahedron Lett. 2004, 45: 3181 - 10
Repine JT.Johnson DS.White AD.Favor FD.Stier MA.Maiti SN. Tetrahedron Lett. 2007, 48: 5539 -
11a
Yamamoto Y.Kawano S.Maekawa H.Nishiguchi I. Synlett. 2004, 30 -
11b
Maekawa H.Sakai M.Uchida T.Kita Y.Nishiguchi I. Tetrahedron Lett. 2004, 45: 607 -
12a
Cook MJ.Dunn AJ.Howe SD.Thomson AJ. J. Chem. Soc., Perkin Trans. 1 1988, 2453 -
12b . inventors; JP 39378.
Reference and Notes
Substitution of activated chlorine groups of 6-nitro-2,3-dichloronaphthalene to cyano groups by sodium cyanide was reported,5 although the yield was inadequate (46%) and application to preparation of many various derivatives may be difficult.