Subscribe to RSS
DOI: 10.1055/s-0030-1260306
A Metal-Free, Aqueous and General Route to 1,5-Disubstituted-1,2,3-triazoles: ‘Reversed Regioisomeric’ 1,3-Dipolar Cycloaddition of Azides and Vinyl Sulfones
Publication History
Publication Date:
13 September 2011 (online)

Abstract
A metal-free, vinyl sulfone-based synthesis of 1,5-disubstituted-1,2,3-triazoles is reported for the first time. These triazoles are easily formed in a regioselective fashion by heating under reflux a mixture of a substituted vinyl sulfone and an organic azide ‘on water’. This powerful and practical route has the potential to be exploited for the synthesis of complex 1,5-disubstituted-1,2,3-triazoles.
Key words
triazoles - on water - vinyl sulfone - organic azide - click chemistry
- Supporting Information for this article is available online:
- Supporting Information
- For recent reviews on 1,2,3-triazoles, see:
-
1a
Kolb HC.Finn MG.Sharpless KB. Angew. Chem. Int. Ed. 2001, 40: 2004 -
1b
Bock VD.Hiemstra H.Maarseveen JHV. Eur. J. Org. Chem. 2006, 51 -
1c
Santoyo-Gonzalez F.Hernandez-Mateo F. Top. Heterocycl. Chem. 2007, 7: 133 -
1d
Tron GC.Pirali T.Billington RA.Canonico PL.Sorba G.Genazzani AA. Med. Res. Rev. 2008, 28: 278 -
1e
Meldal M.Tornøe CW. Chem. Rev. 2008, 108: 2952 -
1f
Holub JM.Kirshenbaum K. Chem. Soc. Rev. 2010, 39: 1325 -
2a
Krasinski A.Fokin VV.Sharpless KB. Org. Lett. 2004, 6: 1237 -
2b
Coats SJ.Link JS.Gauthier D.Hlasta DJ. Org. Lett. 2005, 7: 1469 -
2c
Barr L.Lincoln SF.Easton C. J. Supramol. Chem. 2005, 17: 547 -
2d
Tam A.Arnold U.Soellner MB.Raines RT.
J. Am. Chem. Soc. 2007, 129: 12670 -
2e
Odlo K.Hentzen J.Chabert JFD.Ducki S.Gani OABSM.Sylte I.Skrede M.Florenes M.Hansen TV. Bioorg. Med. Chem. 2008, 16: 4829 -
2f
Horne WS.Olsen CA.Beierle JM.Ontero A.Ghadiri MR. Angew. Chem. Int. Ed. 2009, 48: 4718 -
3a
Zhang L.Chen X.Xue P.Sun HHY.Williams ID.Sharpless KB.Fokin VV.Jia G. J. Am. Chem. Soc. 2005, 127: 15998 -
3b
Rasmussen LK.Boren BC.Fokin VV. Org. Lett. 2007, 9: 5337 -
3c
Boren BC.Narayan S.Rasmussen LK.Zhang L.Zhao H.Lin Z.Jia G.Fokin VV. J. Am. Chem. Soc. 2008, 130: 8923 -
3d
Kwok SW.Fotsing JR.Fraser RJ.Rodionov VO.Fokin VV. Org. Lett. 2010, 12: 4217 ; and references cited therein - For reviews on metal-free triazole formation, see:
-
4a
Becer CR.Hoogenboom R.Schubert US. Angew. Chem. Int. Ed. 2009, 48: 4900 -
4b
Jewett JC.Bertozzi CR. Chem. Soc. Rev. 2010, 39: 1272 -
5a
Pokorski JK.Jenkins LMM.Feng H.Durell SR.Bai Y.Appella DH. Org. Lett. 2007, 9: 2381 -
5b
van Berkel SS.Dirks AJ.Meeuwissen SA.Pingen DLL.Boerman OC.Laverman P.van Delft FL.Cornelissen JJLM.Rutjes FPJT. ChemBioChem 2008, 9: 1805 -
5c
Schmieder AP.Kuhne R.Rademann J. Angew. Chem. Int. Ed. 2009, 48: 5042 -
6a
L’abbe G. Chem. Rev. 1969, 69: 345 -
6b
Synthetic Applications
of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural
Products
Padwa A.Pearson WH. Chichester (UK): 2002. -
6c
Tomé AC. In Science of Synthesis Vol. 13:Storr RC.Gilchrist TL. Thieme; Stuttgart: 2004. p.415 -
7a
Munk ME.Kim YK. J. Am. Chem. Soc. 1964, 86: 2213 -
7b
Nomura Y.Takeuchi Y.Tomoda S.Ito MM. Bull. Chem. Soc. Jpn. 1981, 54: 261 -
7c
Brunner M.Maas G.Klaerner F.-G. Helv. Chim. Acta 2005, 88: 1813 - 8
Beck G.Guenther D. Chem. Ber. 1973, 106: 2758 - 9
Hager C.Miethchen R.Reinke H. J. Fluorine Chem. 2000, 104: 135 -
10a
Fuchs PL.Braish TF. Chem. Rev. 1986, 86: 903 -
10b
Simpkins NS. Sulphones in Organic Synthesis Pergamon; Oxford: 1993. -
10c
Meadows DC.Hague JG. Med. Res. Rev. 2006, 26: 793 -
10d
Pathak T. Tetrahedron 2008, 64: 3605 -
10e
El-Awa A.Noshi MN.du Jourdin XM.Fuchs PL. Chem. Rev. 2009, 109: 2315 - 11
Reeves DC.Rodriguez S.Lee H.Haddad N.Krishnamurthy D. Tetrahedron Lett. 2009, 50: 2870 - 12
Yan J.Wang L. Synthesis 2010, 447 - 13
Vandermeeren L.Leyssens T.Peeters D. J. Mol. Chem. (Theochem) 2007, 804: 1 -
14a The ¹H
NMR spectral data of 2d [δ = 7.67
(s, 1 H), 7.44-7.48 (m, 3 H), 7.36-7.37
(m, 2 H) ppm] are significantly different
to those of the reported 1,4-regioisomer [δ = 7.78 (d, J = 7.2 Hz, 2 H),
7.73 (s, 1 H), 7.36 (t, J = 7.2 Hz,
2 H), 7.27 (t, J = 7.2 Hz,
1 H) ppm], see:
Campbell-Verduyn LS.Mirfeizi L.Dierckx RA.Elsinga PH.Feringa BL. Chem. Commun. 2009, 2139 -
14b
Li P.Wang L. Lett. Org. Chem. 2007, 4: 23 - 16
Farran D.Slawin AMZ.Kirsch P.O’Hagan D. J. Org. Chem. 2009, 74: 7168 - HCCCH2OBn reacts with organic azides in the presence of Cu(I) catalysts, to generate only 1,4-disubstituted-1,2,3-triazoles, see:
-
17a
Collin MP.Hobbie SN.Bottger EC.Vasella A. Helv. Chim. Acta 2008, 91: 1838 -
17b
Langhals H.Obermeier A. Eur. J. Org. Chem. 2008, 6144 - 18
Narayan S.Muldoon J.Finn MG.Fokin VV.Kolb HC.Sharpless KB. Angew. Chem. Int. Ed. 2005, 44: 3275 - 19 For a review on organic synthesis ‘on
water’, see:
Chanda A.Fokin VV. Chem. Rev. 2009, 109: 725
References and Notes
For the synthesis of 11k from 5-azido-5-deoxy-2,3-O-isopropylidene-β-d-ribofuranoside, 2 equiv of NaHCO3 was used in the reaction mixture to neutralize the acid generated after elimination. NaHCO3 is not required for the synthesis of 2b-d, 11a-j or 11l-n.
20General procedure for the synthesis of 1,5-disubstituted-1,2,3-triazoles (2b-d and 11a-n): A mixture of vinyl sulfone 6 or 10 (1 mmol), and azide (1.5 mmol for monoazide and 0.5 mmol for diazide) in water (10 mL/mmol of 6 or 10) was heated at reflux temperature for 3-19 h. After completion of the reaction (monitored by TLC) the reaction mixture was treated with sat. NaHCO3 and the product was extracted with EtOAc (3 × 30 mL). The organic layer was dried over anhydrous Na2SO4, filtered, and the filtrate was evaporated to dryness under reduced pressure. The residue was purified by silica column chromatography to afford the corresponding 1,5-disubstituted-1,2,3-triazoles 2b-d and 11a-n.